Journal of Materials Science

, Volume 48, Issue 11, pp 4081–4087 | Cite as

Thermoelectric properties of p-type semiconductors copper chromium disulfide CuCrS2+x

  • Cheng-Gong Han
  • Bo-Ping Zhang
  • Zhen-Hua Ge
  • Li-Juan Zhang
  • Yao-Chun Liu


A series of bulk samples CuCrS2+x (x = 0, 0.01, 0.02, 0.06, 0.10) were prepared by combining mechanical alloying and spark plasma sintering. The effect of excessive sulfur content on the phase structure, microstructure, and thermoelectric and optical properties was investigated. The excessive sulfur initially entered into the lattice sites and then into the lattice interstices. A direct band gap semiconductor for CuCrS2 material with an optical band gap of about 2.48 eV was proved. An improved electrical conductivity 2980 S m−1 at 673 K reached along with an inversely varied Seebeck coefficient as increasing x value, which showed a maximum power factor of 104 μ W m−1 K−2 at 673 K for CuCrS2.01 sample. In addition to the low thermal conductivity between 0.48 and 1.02 W m−1 K−1 in the whole temperature range, a peak ZT of 0.15 was achieved at 673 K for CuCrS2.01 bulk sample, which was 36 % higher than that (0.11) of the CuCrS2.00.


Bulk Sample Spark Plasma Sinter Bi2Te3 Seebeck Coefficient Bi2S3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China (Grant No. 51272023), and High-Tech 973 Program of China (Grant No. 2013CB632503). We also appreciate the help provided by Prof. J.-F. Li’s laboratory in Tsinghua University for part TE property measurements.


  1. 1.
    Li JF, Liu WS, Zhao LD, Zhou M (2010) NPG Asia Mater 2:152CrossRefGoogle Scholar
  2. 2.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727CrossRefGoogle Scholar
  3. 3.
    Yan X, Poudel B, Ma Y, Liu WS, Joshi G, Wang H, Lan YC, Wang DZ, Chen G, Ren ZF (2010) Nano Lett 10:3373CrossRefGoogle Scholar
  4. 4.
    Ge ZH, Zhang BP, Yu ZX (2011) J Mater Res 26:2711CrossRefGoogle Scholar
  5. 5.
    Liu Y, Zhao LD, Liu YC, Lan JL, Xu W, Li F, Zhang BP, Berardan D, Dragoe N, Lin YH, Nan CW, Li JF, Zhu H (2011) J Am Chem Soc 133:20112CrossRefGoogle Scholar
  6. 6.
    Li F, Li JF, Zhao LD, Xiang K, Liu Y, Zhang BP, Lin YH, Nan CW, Zhu HM (2012) Energy Environ Sci 5:7188CrossRefGoogle Scholar
  7. 7.
    Hahn H, de Lorent C (1957) Z Anorg Allg Chem 290:72CrossRefGoogle Scholar
  8. 8.
    Al’mukhametov RF, Yakshibaev RA, Gabitov ÉV, Abdullin AR (2000) Phys Solid State 42:1508CrossRefGoogle Scholar
  9. 9.
    Tsujii N, Kitazawa H (2007) J Phys Condens Matter 19:145245CrossRefGoogle Scholar
  10. 10.
    Al’mukhametov RF, Yakshibaev RA, Gabitov ÉV (1999) Phys Solid State 41:1327CrossRefGoogle Scholar
  11. 11.
    Abramova GM, Vorotynov AM, PetrakovskiÏ GA, Kiselev NI, Velikanov DA, Bovina AF, Al’mukhametov RF, Yakshibaev RA, Gabitov ÉV (2004) Phys Solid State 46:2225CrossRefGoogle Scholar
  12. 12.
    Singh K, Maignan A, Martin C, Simon Ch (2009) Chem Mater 21:5007CrossRefGoogle Scholar
  13. 13.
    Bongbrs IF, Van Bruggen CF, Koopstra J, Omloo WPFAM, Wiegers GA, Jellinek F (1968) J Phys Chem Solids 29:977CrossRefGoogle Scholar
  14. 14.
    Abramova G, Pankrats A, Petrakovskii G, Rasch JCE, Boehm M, Vorotynov A, Tugarinov V, Szumszak R, Bovina A, Vasil’ev V (2009) Phys Rev B 80:104431CrossRefGoogle Scholar
  15. 15.
    Le Nagard N, Collin G, Gorochov O (1979) Mater Res Bull 14:1411CrossRefGoogle Scholar
  16. 16.
    Boutbila My A, Rasneur J, EI AatmaniM, Lyahyaoui H (1996) J Alloys Compd 244:23CrossRefGoogle Scholar
  17. 17.
    Tewari GC, Tripathi TS, Rastogi AK (2010) J Electron Mater 39:1133CrossRefGoogle Scholar
  18. 18.
    Tewari GC, Tripathi TS, Kumar P, Rastogi AK, Pasha SK, Gupta G (2011) J Electron Mater 40:2368CrossRefGoogle Scholar
  19. 19.
    Gascoin F, Maignan A (2011) Chem Mater 23:2510CrossRefGoogle Scholar
  20. 20.
    Li JH, Tan Q, Li JF (2013) J Alloys Compd 551:143CrossRefGoogle Scholar
  21. 21.
    Chen YX, Zhang BP, Ge ZH, Shang PP (2012) J Solid State Chem 186:109CrossRefGoogle Scholar
  22. 22.
    Tsujii N, Kitazawa H, Kido G (2006) Phys State Solidi 3:2775CrossRefGoogle Scholar
  23. 23.
    Liu ML, Wang YM, Huang FQ, Chen LD, Wang WD (2007) Scr Mater 57:1133CrossRefGoogle Scholar
  24. 24.
    Ge ZH, Zhang BP, Shang PP, Yu YQ, Chen C, Li JF (2011) J Electron Mater 40:1087CrossRefGoogle Scholar
  25. 25.
    Ge ZH, Zhang BP, Liu Y, Li JF (2012) Phys Chem Chem Phys 14:4475CrossRefGoogle Scholar
  26. 26.
    Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall, Englewood CliffsGoogle Scholar
  27. 27.
    Muthukumaran S, Gopalakrishnan R (2012) Physica B 407:3448CrossRefGoogle Scholar
  28. 28.
    Singh G, Shrivastava SB, Jain D, Pandya S, Shripathi T, Ganesan V (2010) Bull Mater Sci 33:581CrossRefGoogle Scholar
  29. 29.
    Wang SJ, Zhang BP, Yan LP, Deng W (2011) J Alloys Compd 509:5731CrossRefGoogle Scholar
  30. 30.
    Tewari GC, Tripathi TS, Rastogi AK (2010) Z Kristallogr 225:471CrossRefGoogle Scholar
  31. 31.
    Bouchard RJ, Russo PA, Wold A (1965) Inorg Chem 4:685CrossRefGoogle Scholar
  32. 32.
    Yakshibaevg RA, Akmanovar GR, Almukhametov RF, Konev VN (1991) Phys Status Solidi A 124:417CrossRefGoogle Scholar
  33. 33.
    Jeffrey Snyder G, Caillat T, Fleurial JP (2001) Mat Res Innovat 5:67CrossRefGoogle Scholar
  34. 34.
    Zhang ZH, Sharma PA, Lavernia EJ, Yang N (2011) J Mater Res 26:475CrossRefGoogle Scholar
  35. 35.
    Wang XW, Lee H, Lan YC, Zhu GH, Joshi G, Wang DZ, Yang J, Muto AJ, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren ZF (2008) Appl Phys Lett 93:193121CrossRefGoogle Scholar
  36. 36.
    Lee EK, Yin L, Lee YJ, Lee JW, Lee SJ, Lee J, Cha SN, Whang D, Hwang GS, Hippalgaonkar K, Majumdar A (2012) Nano Lett 12:2918CrossRefGoogle Scholar
  37. 37.
    Fan XA, Yang JY, Chen RG, Yun HS, Zhu W, Bao SQ, Duan XK (2006) J Phys D 39:740CrossRefGoogle Scholar
  38. 38.
    Hochbaum I, Chen R, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Nature 451:163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cheng-Gong Han
    • 1
  • Bo-Ping Zhang
    • 1
  • Zhen-Hua Ge
    • 1
  • Li-Juan Zhang
    • 1
  • Yao-Chun Liu
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations