Journal of Materials Science

, Volume 48, Issue 10, pp 3659–3664 | Cite as

Preparation and characterization of electrospun poly(ε-caprolactone)-poly(l-lactic acid) nanofiber tubes

  • Zeeshan Khatri
  • Ryu Nakashima
  • Gopiraman Mayakrishnan
  • Ki-Hoon Lee
  • Young-Hwan Park
  • Kai Wei
  • Ick-Soo Kim


Recently, attempts have been made to develop nanofiber tubes suitable for nerve regeneration made of biodegradable nanofibers. Among all polymeric nanofibers, poly(ε-caprolactone) (PCL) is distinctively known for better mechanical stability and poly(l-lactic acid) (PLLA) for relatively faster biodegradability. Our purpose of study is to investigate their blending compatibility and the ability to form nanofiber tubes via electrospinning. We electrospun the PCL–PLLA nanofiber tubular using different blend ratios of PCL–PLLA. The electrospun nanofibers were continuously deposited over high speed rotating mandrel to fabricate nanofiber tubes having inner diameter of 2 mm and the wall thickness of 55–65 μm. The diameters of nanofibers were between 715 and 860 nm. The morphologies of PCL–PLLA nanofiber tubes were examined under scanning electron microscope, and showed better structural stability and formability than the neat PLLA nanofibers. Fourier transform infrared spectroscopy study revealed that the PCL–PLLA blend nanofiber exhibited characteristic peaks of both PCL and PLLA and was composition-dependent. Raman and X-ray diffraction studies showed that the increasing PCL ratio in the PCL–PLLA blend increased crystallinity of PCL–PLLA blends. Differential scanning calorimetry revealed recrystallization peaks in PCL–PLLA blends ratios of 1:2 and 1:1. Based on characterization, the electrospun PCL–PLLA nanofiber tubes is considered to be a better candidate for further in vivo or in vitro investigation, and resolve biocompatibility issues in tissue engineering.


PLLA Electrospun Nanofibers PDLA Neat PLLA Nerve Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Grant-in-Aid for Global COE Program by the Ministry of Education, Culture Sports Science, and Technology, Japan.


  1. 1.
    Ku SH, Park CB (2010) Biomaterials 31:9431. doi: 10.1016/j.biomaterials.2010.08.071 CrossRefGoogle Scholar
  2. 2.
    Panseri S, Cunha C, Lowery J, Carro UD, Taraballi F, Amadio S, Vescovi A, Gelain (2008) BMC Biotechnol 8:39. doi: 10.1186/1472-6750-8-39 CrossRefGoogle Scholar
  3. 3.
    Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) J Mater Sci 45:6283. doi: 10.1007/s10853-010-4509-1 CrossRefGoogle Scholar
  4. 4.
    Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Nanoscale 2:35. doi: 10.1039/B9NR00243J CrossRefGoogle Scholar
  5. 5.
    Wang S, Cai L (2010) Polymers for fabricating nerve conduits. Int J Polym Sci 2010. doi:  10.1155/2010/138686
  6. 6.
    Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ (2008) Biomaterials 29:1422. doi: 10.1016/j.biomaterials.2007.11.024 CrossRefGoogle Scholar
  7. 7.
    Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Biomaterials 25:1891. doi: 10.1016/j.biomaterials.2003.08.062 CrossRefGoogle Scholar
  8. 8.
    Patra SN, Easteal AJ, Bhattacharyya D (2009) J Mater Sci 44:647. doi: 10.1007/s10853-008-3050-y CrossRefGoogle Scholar
  9. 9.
    Bini TB, Gao S, Wang S, Ramakrishna S (2006) J Mater Sci 41:6453. doi: 10.1007/s10853-006-0714-3 CrossRefGoogle Scholar
  10. 10.
    Tian L, Prabhakaran MP, Ding X, Kai D, Ramakrishna S (2012) J Mater Sci 47:3272. doi: 10.1007/s10853-011-6166-4 CrossRefGoogle Scholar
  11. 11.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403. doi: 10.1016/S0032-3861(02)00275-6 CrossRefGoogle Scholar
  12. 12.
    Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Biomaterials 25:877. doi: 10.1016/S0142-9612(03)00593-3 CrossRefGoogle Scholar
  13. 13.
    Marelli B, Alessandrino A, Farè S, Freddi G, Mantovani D, Tanzi MC (2010) Acta Biomater 6:4019. doi: 10.1016/j.actbio.2010.05.008 CrossRefGoogle Scholar
  14. 14.
    Carfì-Pavia F, La-Carrubba V, Brucato V (2009) Int J Mater Form 2:713. doi: 10.1007/s12289-009-0574-x CrossRefGoogle Scholar
  15. 15.
    Hollister SJ (2005) Nat Mater 4:518. doi: 10.1038/nmat1421 CrossRefGoogle Scholar
  16. 16.
    Gross RA, Kalra B (2002) Science 297:803. doi: 10.1126/science.297.5582.803 CrossRefGoogle Scholar
  17. 17.
    Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Macromol Biosci 4:1118. doi: 10.1002/mabi.200400092 CrossRefGoogle Scholar
  18. 18.
    Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Benjamin SH, Benjamin C, Hadjiargyrou M (2003) Biomaterials 24:4977. doi: 10.1016/S0142-9612(03)00407-1 CrossRefGoogle Scholar
  19. 19.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) J Colloid Interf Sci 273:381. doi: 10.1016/j.jcis.2004.02.001 CrossRefGoogle Scholar
  20. 20.
    He J, Qin Y, Cui S, Gao Y, Wang S (2011) J Mater Sci 46:2938. doi: 10.1007/s10853-010-5169-x CrossRefGoogle Scholar
  21. 21.
    Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Polymer 47:3132. doi: 10.1016/j.polymer.2006.03.010 CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Taddei P, Tinti A, Fini G (2001) J Raman Spectrosc 32:619. doi: 10.1002/jrs.723 CrossRefGoogle Scholar
  24. 24.
    Hartman O, Zhang C, Adams EL, Farach-Carson MC, Petrelli NJ, Chase BD, Rabolt JF (2010) Biomaterials 31:5700. doi: 10.1016/j.biomaterials.2010.03.017 CrossRefGoogle Scholar
  25. 25.
    Meng ZX, Zheng W, Li L, Zheng YF (2010) Mat Sci Eng C 30:1014. doi: 10.1016/j.msec.2010.05.003 CrossRefGoogle Scholar
  26. 26.
    Liu D, Yuan X, Bhattacharyya D (2012) J Mater Sci 47:3159. doi: 10.1007/s10853-011-6150-z CrossRefGoogle Scholar
  27. 27.
    Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Phys 87:4531. doi: 10.1063/1.373532 CrossRefGoogle Scholar
  28. 28.
    Yang JM, Chen HL, You JW, Hwang JC (1997) Polym J 29:657. doi: 10.1295/polymj.29.657 CrossRefGoogle Scholar
  29. 29.
    Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226. doi: 10.1002/(SICI)1097-4628(20000705)77:1<226:AID-APP29>3.0.CO;2-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zeeshan Khatri
    • 1
    • 2
  • Ryu Nakashima
    • 1
  • Gopiraman Mayakrishnan
    • 1
  • Ki-Hoon Lee
    • 3
  • Young-Hwan Park
    • 3
  • Kai Wei
    • 1
  • Ick-Soo Kim
    • 1
  1. 1.Nano Fusion Technology Research Group, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  2. 2.Department of Textile EngineeringMehran University of Engineering and TechnologyJamshoroPakistan
  3. 3.Department of Biosystems and Biomaterials Science and EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations