Skip to main content
Log in

Preparation and characterization of electrospun poly(ε-caprolactone)-poly(l-lactic acid) nanofiber tubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, attempts have been made to develop nanofiber tubes suitable for nerve regeneration made of biodegradable nanofibers. Among all polymeric nanofibers, poly(ε-caprolactone) (PCL) is distinctively known for better mechanical stability and poly(l-lactic acid) (PLLA) for relatively faster biodegradability. Our purpose of study is to investigate their blending compatibility and the ability to form nanofiber tubes via electrospinning. We electrospun the PCL–PLLA nanofiber tubular using different blend ratios of PCL–PLLA. The electrospun nanofibers were continuously deposited over high speed rotating mandrel to fabricate nanofiber tubes having inner diameter of 2 mm and the wall thickness of 55–65 μm. The diameters of nanofibers were between 715 and 860 nm. The morphologies of PCL–PLLA nanofiber tubes were examined under scanning electron microscope, and showed better structural stability and formability than the neat PLLA nanofibers. Fourier transform infrared spectroscopy study revealed that the PCL–PLLA blend nanofiber exhibited characteristic peaks of both PCL and PLLA and was composition-dependent. Raman and X-ray diffraction studies showed that the increasing PCL ratio in the PCL–PLLA blend increased crystallinity of PCL–PLLA blends. Differential scanning calorimetry revealed recrystallization peaks in PCL–PLLA blends ratios of 1:2 and 1:1. Based on characterization, the electrospun PCL–PLLA nanofiber tubes is considered to be a better candidate for further in vivo or in vitro investigation, and resolve biocompatibility issues in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ku SH, Park CB (2010) Biomaterials 31:9431. doi:10.1016/j.biomaterials.2010.08.071

    Article  CAS  Google Scholar 

  2. Panseri S, Cunha C, Lowery J, Carro UD, Taraballi F, Amadio S, Vescovi A, Gelain (2008) BMC Biotechnol 8:39. doi:10.1186/1472-6750-8-39

    Article  Google Scholar 

  3. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) J Mater Sci 45:6283. doi:10.1007/s10853-010-4509-1

    Article  CAS  Google Scholar 

  4. Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Nanoscale 2:35. doi:10.1039/B9NR00243J

    Article  CAS  Google Scholar 

  5. Wang S, Cai L (2010) Polymers for fabricating nerve conduits. Int J Polym Sci 2010. doi: 10.1155/2010/138686

  6. Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ (2008) Biomaterials 29:1422. doi:10.1016/j.biomaterials.2007.11.024

    Article  CAS  Google Scholar 

  7. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Biomaterials 25:1891. doi:10.1016/j.biomaterials.2003.08.062

    Article  CAS  Google Scholar 

  8. Patra SN, Easteal AJ, Bhattacharyya D (2009) J Mater Sci 44:647. doi:10.1007/s10853-008-3050-y

    Article  CAS  Google Scholar 

  9. Bini TB, Gao S, Wang S, Ramakrishna S (2006) J Mater Sci 41:6453. doi:10.1007/s10853-006-0714-3

    Article  CAS  Google Scholar 

  10. Tian L, Prabhakaran MP, Ding X, Kai D, Ramakrishna S (2012) J Mater Sci 47:3272. doi:10.1007/s10853-011-6166-4

    Article  CAS  Google Scholar 

  11. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403. doi:10.1016/S0032-3861(02)00275-6

    Article  CAS  Google Scholar 

  12. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Biomaterials 25:877. doi:10.1016/S0142-9612(03)00593-3

    Article  CAS  Google Scholar 

  13. Marelli B, Alessandrino A, Farè S, Freddi G, Mantovani D, Tanzi MC (2010) Acta Biomater 6:4019. doi:10.1016/j.actbio.2010.05.008

    Article  CAS  Google Scholar 

  14. Carfì-Pavia F, La-Carrubba V, Brucato V (2009) Int J Mater Form 2:713. doi:10.1007/s12289-009-0574-x

    Article  Google Scholar 

  15. Hollister SJ (2005) Nat Mater 4:518. doi:10.1038/nmat1421

    Article  CAS  Google Scholar 

  16. Gross RA, Kalra B (2002) Science 297:803. doi:10.1126/science.297.5582.803

    Article  CAS  Google Scholar 

  17. Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Macromol Biosci 4:1118. doi:10.1002/mabi.200400092

    Article  CAS  Google Scholar 

  18. Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Benjamin SH, Benjamin C, Hadjiargyrou M (2003) Biomaterials 24:4977. doi:10.1016/S0142-9612(03)00407-1

    Article  CAS  Google Scholar 

  19. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) J Colloid Interf Sci 273:381. doi:10.1016/j.jcis.2004.02.001

    Article  CAS  Google Scholar 

  20. He J, Qin Y, Cui S, Gao Y, Wang S (2011) J Mater Sci 46:2938. doi:10.1007/s10853-010-5169-x

    Article  CAS  Google Scholar 

  21. Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Polymer 47:3132. doi:10.1016/j.polymer.2006.03.010

    Article  CAS  Google Scholar 

  22. He Y, Inoue Y (2000) Polym Int 49:623. doi:10.1002/1097-0126(200006)49:6<623:AID-PI435>3.0.CO;2-8

    Article  CAS  Google Scholar 

  23. Taddei P, Tinti A, Fini G (2001) J Raman Spectrosc 32:619. doi:10.1002/jrs.723

    Article  CAS  Google Scholar 

  24. Hartman O, Zhang C, Adams EL, Farach-Carson MC, Petrelli NJ, Chase BD, Rabolt JF (2010) Biomaterials 31:5700. doi:10.1016/j.biomaterials.2010.03.017

    Article  CAS  Google Scholar 

  25. Meng ZX, Zheng W, Li L, Zheng YF (2010) Mat Sci Eng C 30:1014. doi:10.1016/j.msec.2010.05.003

    Article  CAS  Google Scholar 

  26. Liu D, Yuan X, Bhattacharyya D (2012) J Mater Sci 47:3159. doi:10.1007/s10853-011-6150-z

    Article  CAS  Google Scholar 

  27. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Phys 87:4531. doi:10.1063/1.373532

    Article  CAS  Google Scholar 

  28. Yang JM, Chen HL, You JW, Hwang JC (1997) Polym J 29:657. doi:10.1295/polymj.29.657

    Article  CAS  Google Scholar 

  29. Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226. doi:10.1002/(SICI)1097-4628(20000705)77:1<226:AID-APP29>3.0.CO;2-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Global COE Program by the Ministry of Education, Culture Sports Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wei or Ick-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khatri, Z., Nakashima, R., Mayakrishnan, G. et al. Preparation and characterization of electrospun poly(ε-caprolactone)-poly(l-lactic acid) nanofiber tubes. J Mater Sci 48, 3659–3664 (2013). https://doi.org/10.1007/s10853-013-7161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7161-8

Keywords

Navigation