Journal of Materials Science

, Volume 48, Issue 9, pp 3395–3403 | Cite as

Investigation of the lithium-rich boundary of the Li1+x Mn2−x O4 cubic spinel phase in air

  • Damian M. Cupid
  • Toni Lehmann
  • Thomas Bergfeldt
  • Harald Berndt
  • Hans J. Seifert


Several compositions of the cubic spinel Li1+x Mn2−x O4−δ phase in the lithium–manganese–oxygen (Li–Mn–O) system were synthesized at 700, 750, and 800 °C in air (\( p_{{{\text{O}}_{2} }} \) = 0.2 atm) to investigate the Li-rich boundary of the cubic spinel phase at these temperatures. The lattice parameters of the several compositions were determined by Rietveld analysis of the measured X-ray patterns, and the Li and Mn contents of the samples were measured using inductively coupled plasma with optical emission spectroscopy (ICP-OES). A Vegard-like dependence of the measured lattice parameter of the cubic spinel phase with Li to Mn ratio exists in the homogeneity range of the cubic spinel. This dependence could be used to derive the boundary of the single phase cubic spinel field in the Li–Mn–O system at 700 and 750 °C at \( p_{{{\text{O}}_{2} }} \) = 0.2 atm and to estimate the Li-rich boundary at 800 °C. The results of the present study are compared with two other experimental studies on the homogeneity range of the cubic spinel phase in an attempt to resolve the contradiction between these two studies.


Spinel Phase Homogeneity Range LiMn2O4 Spinel Tetragonal Spinel Li2MnO3 Phase 



The authors would like to thank the German Research Foundation (DFG) Priority Program 1473 WenDeLib—Materials with New design for Improved Lithium Ion Batteries for the financial support.


  1. 1.
    Berg H, Kelder EM, Thomas JO (1999) J Mater Chem 9:427CrossRefGoogle Scholar
  2. 2.
    Berg H, Göransson K, Noläng B, Thomas JO (1999) J Mater Chem 9:2813CrossRefGoogle Scholar
  3. 3.
    Thackeray MM (1997) Prog Solid State Chem 25:1CrossRefGoogle Scholar
  4. 4.
    Park SH, Ahn HS, Park GJ, Kim J, Lee YS (2008) Mater Chem Phys 112:696CrossRefGoogle Scholar
  5. 5.
    Yu DYW, Yanagida K (2011) J Electrochem Soc 158(9):A1015CrossRefGoogle Scholar
  6. 6.
    Park S-H, Sato Y, Kim J-K, Lee Y-S (2007) Mater Chem Phys 102:225CrossRefGoogle Scholar
  7. 7.
    Tsuji T, Umakoshi H, Yamamura Y (2005) J Phys Chem Solids 66(2–4):283CrossRefGoogle Scholar
  8. 8.
    Yamada A, Miura K, Hinokuma K, Tanaka M (1995) J Electrochem Soc 142(7):2149CrossRefGoogle Scholar
  9. 9.
    Paulsen JM, Dahn JR (1999) Chem Mater 11:3065CrossRefGoogle Scholar
  10. 10.
    Gummow RJ, Kock Ad, Thackeray MM (1994) Solid State Ion 69:59CrossRefGoogle Scholar
  11. 11.
    Gao Y, Dahn JR (1996) J Electrochem Soc 143(6):1783CrossRefGoogle Scholar
  12. 12.
    Luo C, Martin M (2007) J Mater Sci 42(6):1955. doi: 10.1007/s10853-006-0452-6 CrossRefGoogle Scholar
  13. 13.
    Thackeray MM, Mansuetto MF, Dees DW, Vissers DR (1996) Mater Res Bull 31(2):133CrossRefGoogle Scholar
  14. 14.
    Massarotti V, Capsoni D, Bini M (2002) Solid State Commun 122:317CrossRefGoogle Scholar
  15. 15.
    Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R (2007) Z Kristallogr 26:125CrossRefGoogle Scholar
  16. 16.
    Yonemura M, Yamada A, Kobayashi H, Tabuchi M, Kamiyama T, Kawamoto Y, Kanno R (2004) J Mater Chem 14:1948CrossRefGoogle Scholar
  17. 17.
    Komaba S, Yabuuchni N, Ikemoto S (2010) J Solid State Chem 183:234CrossRefGoogle Scholar
  18. 18.
    Ahn D, Song MY (2000) J Electrochem Soc 147(3):874CrossRefGoogle Scholar
  19. 19.
    Lee YS, Hideshima Y, Sun YK, Yoshio M (2002) J Electroceram 9:209CrossRefGoogle Scholar
  20. 20.
    Piszora P (2005) J Alloy Compd 401:34CrossRefGoogle Scholar
  21. 21.
    Son JT, Park KS, Kim HG, Chung HT (2004) J Mater Sci 39:3635. doi: 10.1023/B:JMSC.0000030716.52790.96 CrossRefGoogle Scholar
  22. 22.
    Takada T, Enoki H, Hayakawa H, Akiba E (1998) J Solid State Chem 139:290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Damian M. Cupid
    • 1
  • Toni Lehmann
    • 2
    • 3
  • Thomas Bergfeldt
    • 1
  • Harald Berndt
    • 1
  • Hans J. Seifert
    • 1
  1. 1.Karlsruhe Institute of Technology, Institute for Applied Materials—Applied Materials Physics (IAM-AWP)Eggenstein-LeopoldshafenGermany
  2. 2.Technische Universität Bergakademie Freiberg, Institute of Materials ScienceFreibergGermany
  3. 3.Fraunhofer Technology Center for Semiconductor MaterialsFreibergGermany

Personalised recommendations