Journal of Materials Science

, Volume 48, Issue 14, pp 4834–4842 | Cite as

Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes

  • Huaiping Rong
  • Klaus-Hermann Dahmen
  • Hamid Garmestani
  • Muhuo Yu
  • Karl I. Jacob


By engineering the fiber/matrix interface, the properties of the composite can be changed significantly. In this work, we increased the effective surface area of the fiber/matrix interface, to facilitate additional stress transfer between fibers and matrix, by grafting carbon nanotubes on to carbon fibers (in the form of carbon fabric) by two different methods: (1) chemical vapor deposition (CVD) method and (2) a purely chemical method. With the CVD process, carbon nanotubes (CNT) were directly grown on carbon fiber substrate using chemical vapors. For the chemical method, CNT with carboxyl groups were grafted on functionalized carbon fiber via a chemical reaction. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM) which revealed uniform coverage of carbon fibers with CNT in both of CVD method and chemical grafting method. CNT-grafted woven carbon fibers were used to make carbon/epoxy composites, and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT-grafted carbon fiber reinforcements using the CVD process has 11 % higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT-grafted carbon fibers with chemical method showed 20 % higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.


Chemical Vapor Deposition Carbon Fiber High Tensile Strength Flexural Modulus Chemical Vapor Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Huaiping Rong would like to acknowledge the support from the National Basic Research Program (Grant No. 2011CB605600-G) of China (973 Program), the Ph.D. Students Innovation Project of Donghua university Shanghai city in China (Grant No. 9D10628), the China Scholarship Council (CSC) (2010- 2012), and the School of Materials Science and Engineering (MSE) at the Georgia Institute of Technology.


  1. 1.
    Mangalgiri P (1999) Bull Mater Sci 22:657CrossRefGoogle Scholar
  2. 2.
    Dai ZS, Zhang BY, Shi FH, Li M, Zhang ZG, Gu YZ (2011) Appl Surf Sci 257:8457CrossRefGoogle Scholar
  3. 3.
    Rezaei F, Yunus R, Ibrahim NA (2009) Mater Des 30:260CrossRefGoogle Scholar
  4. 4.
    Ye YP, Chen HB, Wu JS, Chan CM (2011) Compos B Eng 42:2145CrossRefGoogle Scholar
  5. 5.
    Fan Z, Wu C, Chen J (2008) Carbon 46:365CrossRefGoogle Scholar
  6. 6.
    Xie X-L, Mai Y-W, Zhou X-P (2005) Mater Sci Eng R: Rep 49:89CrossRefGoogle Scholar
  7. 7.
    Siddiqui NA, Khan SU, Ma PC, Li CY, Kim JK (2011) Compos A Appl Sci Manuf 42:1412CrossRefGoogle Scholar
  8. 8.
    Cho J, Daniel I (2008) Scripta Mater 58:533CrossRefGoogle Scholar
  9. 9.
    Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Nano Lett 3:1107CrossRefGoogle Scholar
  10. 10.
    Aldajah S, Haik Y (2012) Mater Des 34:379CrossRefGoogle Scholar
  11. 11.
    Gonçalez V, Barcia FL, Soares BG (2006) J Braz Chem Soc 17:1117CrossRefGoogle Scholar
  12. 12.
    Kaynak C, Orgun O, Tincer T (2005) Polym Test 24:455CrossRefGoogle Scholar
  13. 13.
    Feraboli P, Masini A (2004) Compos B Eng 35:323CrossRefGoogle Scholar
  14. 14.
    Zhang F-H, Wang R-G, He X-D, Wang C, Ren L-N (2009) J Mater Sci 44:3574. doi: 10.1007/s10853-009-3484-x CrossRefGoogle Scholar
  15. 15.
    Lee JS, Kang TJ (1997) Carbon 35:209CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2008) Mater Sci Eng A 475:157CrossRefGoogle Scholar
  17. 17.
    de Resende VG, Antunes EF, de Oliveira Lobo A, Oliveira DAL, Trava-Airoldi VJ, Corat EJ (2010) Carbon 48:3635Google Scholar
  18. 18.
    Zhao F, Huang YD (2011) J Mater Chem 21:3695CrossRefGoogle Scholar
  19. 19.
    Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) J Appl Phys 91:6034CrossRefGoogle Scholar
  20. 20.
    Mathur RB, Chatterjee S, Singh BP (2008) Compos Sci Technol 68:1608CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Liu J, Sager R, Dai L, Baur J (2009) Compos Sci Technol 69:594CrossRefGoogle Scholar
  22. 22.
    An F, Lu CX, Li YH, Guo JH, Lu XX, Lu HB, He SQ, Yang Y (2012) Mater Des 33:197CrossRefGoogle Scholar
  23. 23.
    Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu XT, Tannenbaum R (2010) J Phys Chem C 114:6944CrossRefGoogle Scholar
  24. 24.
    Rong HP, Han KQ, Li S, Tian YC, Yu MH (2012) J Appl Polym Sci 127:2033CrossRefGoogle Scholar
  25. 25.
    Laachachi A, Vivet A, Nouet G, Ben Doudou B, Poilane C, Chen J, Bai JB, Ayachi M (2008) Mater Lett 62:394CrossRefGoogle Scholar
  26. 26.
    Sharma SP, Lakkad SC (2011) Compos A Appl Sci Manuf 42:8CrossRefGoogle Scholar
  27. 27.
    Lv P, Feng YY, Zhang P, Chen HM, Zhao NQ, Feng W (2011) Carbon 49:4665CrossRefGoogle Scholar
  28. 28.
    Agnihotri P, Basu S, Kar KK (2011) Carbon 49:3098CrossRefGoogle Scholar
  29. 29.
    Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou T-W, Itkis ME, Haddon RC (2007) Langmuir 23:3970CrossRefGoogle Scholar
  30. 30.
    Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT (2011) Compos B Eng 42:1257CrossRefGoogle Scholar
  31. 31.
    He XD, Zhang FH, Wang RG, Liu WB (2007) Carbon 45:2559CrossRefGoogle Scholar
  32. 32.
    Ashrafi B, Guan JW, Mirjalili V, Zhang YF, Chun L, Hubert P, Simard B, Kingston CT, Bourne O, Johnston A (2011) Compos Sci Technol 71:1569CrossRefGoogle Scholar
  33. 33.
    Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) Compos Sci Technol 71:1089CrossRefGoogle Scholar
  34. 34.
    Xie J, Xin D, Cao H, Wang C, Zhao Y, Yao L, Ji F, Qiu Y (2011) Surf Coat Technol 206:191CrossRefGoogle Scholar
  35. 35.
    Zhao JG, Liu L, Guo QG, Shi JL, Zhai GT, Song JR (2008) New Carbon Mater 23:12Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Huaiping Rong
    • 1
    • 2
  • Klaus-Hermann Dahmen
    • 2
  • Hamid Garmestani
    • 2
  • Muhuo Yu
    • 1
  • Karl I. Jacob
    • 2
    • 3
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations