Skip to main content
Log in

Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By engineering the fiber/matrix interface, the properties of the composite can be changed significantly. In this work, we increased the effective surface area of the fiber/matrix interface, to facilitate additional stress transfer between fibers and matrix, by grafting carbon nanotubes on to carbon fibers (in the form of carbon fabric) by two different methods: (1) chemical vapor deposition (CVD) method and (2) a purely chemical method. With the CVD process, carbon nanotubes (CNT) were directly grown on carbon fiber substrate using chemical vapors. For the chemical method, CNT with carboxyl groups were grafted on functionalized carbon fiber via a chemical reaction. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM) which revealed uniform coverage of carbon fibers with CNT in both of CVD method and chemical grafting method. CNT-grafted woven carbon fibers were used to make carbon/epoxy composites, and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT-grafted carbon fiber reinforcements using the CVD process has 11 % higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT-grafted carbon fibers with chemical method showed 20 % higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mangalgiri P (1999) Bull Mater Sci 22:657

    Article  CAS  Google Scholar 

  2. Dai ZS, Zhang BY, Shi FH, Li M, Zhang ZG, Gu YZ (2011) Appl Surf Sci 257:8457

    Article  CAS  Google Scholar 

  3. Rezaei F, Yunus R, Ibrahim NA (2009) Mater Des 30:260

    Article  CAS  Google Scholar 

  4. Ye YP, Chen HB, Wu JS, Chan CM (2011) Compos B Eng 42:2145

    Article  Google Scholar 

  5. Fan Z, Wu C, Chen J (2008) Carbon 46:365

    Article  Google Scholar 

  6. Xie X-L, Mai Y-W, Zhou X-P (2005) Mater Sci Eng R: Rep 49:89

    Article  Google Scholar 

  7. Siddiqui NA, Khan SU, Ma PC, Li CY, Kim JK (2011) Compos A Appl Sci Manuf 42:1412

    Article  Google Scholar 

  8. Cho J, Daniel I (2008) Scripta Mater 58:533

    Article  CAS  Google Scholar 

  9. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Nano Lett 3:1107

    Article  CAS  Google Scholar 

  10. Aldajah S, Haik Y (2012) Mater Des 34:379

    Article  CAS  Google Scholar 

  11. Gonçalez V, Barcia FL, Soares BG (2006) J Braz Chem Soc 17:1117

    Article  Google Scholar 

  12. Kaynak C, Orgun O, Tincer T (2005) Polym Test 24:455

    Article  CAS  Google Scholar 

  13. Feraboli P, Masini A (2004) Compos B Eng 35:323

    Article  Google Scholar 

  14. Zhang F-H, Wang R-G, He X-D, Wang C, Ren L-N (2009) J Mater Sci 44:3574. doi:10.1007/s10853-009-3484-x

    Article  CAS  Google Scholar 

  15. Lee JS, Kang TJ (1997) Carbon 35:209

    Article  CAS  Google Scholar 

  16. Zhou Y, Pervin F, Lewis L, Jeelani S (2008) Mater Sci Eng A 475:157

    Article  Google Scholar 

  17. de Resende VG, Antunes EF, de Oliveira Lobo A, Oliveira DAL, Trava-Airoldi VJ, Corat EJ (2010) Carbon 48:3635

    Google Scholar 

  18. Zhao F, Huang YD (2011) J Mater Chem 21:3695

    Article  CAS  Google Scholar 

  19. Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) J Appl Phys 91:6034

    Article  CAS  Google Scholar 

  20. Mathur RB, Chatterjee S, Singh BP (2008) Compos Sci Technol 68:1608

    Article  CAS  Google Scholar 

  21. Zhang Q, Liu J, Sager R, Dai L, Baur J (2009) Compos Sci Technol 69:594

    Article  CAS  Google Scholar 

  22. An F, Lu CX, Li YH, Guo JH, Lu XX, Lu HB, He SQ, Yang Y (2012) Mater Des 33:197

    Article  CAS  Google Scholar 

  23. Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu XT, Tannenbaum R (2010) J Phys Chem C 114:6944

    Article  CAS  Google Scholar 

  24. Rong HP, Han KQ, Li S, Tian YC, Yu MH (2012) J Appl Polym Sci 127:2033

    Article  Google Scholar 

  25. Laachachi A, Vivet A, Nouet G, Ben Doudou B, Poilane C, Chen J, Bai JB, Ayachi M (2008) Mater Lett 62:394

    Article  CAS  Google Scholar 

  26. Sharma SP, Lakkad SC (2011) Compos A Appl Sci Manuf 42:8

    Article  Google Scholar 

  27. Lv P, Feng YY, Zhang P, Chen HM, Zhao NQ, Feng W (2011) Carbon 49:4665

    Article  CAS  Google Scholar 

  28. Agnihotri P, Basu S, Kar KK (2011) Carbon 49:3098

    Article  CAS  Google Scholar 

  29. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou T-W, Itkis ME, Haddon RC (2007) Langmuir 23:3970

    Article  CAS  Google Scholar 

  30. Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT (2011) Compos B Eng 42:1257

    Article  Google Scholar 

  31. He XD, Zhang FH, Wang RG, Liu WB (2007) Carbon 45:2559

    Article  CAS  Google Scholar 

  32. Ashrafi B, Guan JW, Mirjalili V, Zhang YF, Chun L, Hubert P, Simard B, Kingston CT, Bourne O, Johnston A (2011) Compos Sci Technol 71:1569

    Article  CAS  Google Scholar 

  33. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) Compos Sci Technol 71:1089

    Article  CAS  Google Scholar 

  34. Xie J, Xin D, Cao H, Wang C, Zhao Y, Yao L, Ji F, Qiu Y (2011) Surf Coat Technol 206:191

    Article  CAS  Google Scholar 

  35. Zhao JG, Liu L, Guo QG, Shi JL, Zhai GT, Song JR (2008) New Carbon Mater 23:12

    CAS  Google Scholar 

Download references

Acknowledgements

Huaiping Rong would like to acknowledge the support from the National Basic Research Program (Grant No. 2011CB605600-G) of China (973 Program), the Ph.D. Students Innovation Project of Donghua university Shanghai city in China (Grant No. 9D10628), the China Scholarship Council (CSC) (2010- 2012), and the School of Materials Science and Engineering (MSE) at the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl I. Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, H., Dahmen, KH., Garmestani, H. et al. Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes. J Mater Sci 48, 4834–4842 (2013). https://doi.org/10.1007/s10853-012-7119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7119-2

Keywords

Navigation