Journal of Materials Science

, Volume 48, Issue 13, pp 4730–4741 | Cite as

The significance of grain boundary sliding in the superplastic Zn–22 % Al alloy processed by ECAP

  • Megumi Kawasaki
  • Terence G. Langdon
Nanostructured Materials


A Zn–22 % Al eutectoid alloy was processed by equal-channel angular pressing (ECAP) to reduce the grain size to ~0.8 μm. Tensile testing at 473 K showed superplastic characteristics with a maximum elongation of ~2230 % at a strain rate of 1.0 × 10−2 s−1. The significance of grain boundary sliding (GBS) was evaluated by measuring sliding offsets at adjacent grains from the displacements of surface marker lines in samples pulled to elongations of 30 % at a series of different strain rates. The highest sliding contribution was recorded under testing conditions corresponding to the maximum superplastic ductility. There were relatively large offsets at the Zn–Zn and Zn–Al interfaces, but smaller offsets at the Al–Al interfaces. Analysis shows the results are affected by the presence of agglomerates of similar grains which are present after ECAP processing and specifically by the increased fraction of Al–Al boundaries. The experimental results are in excellent agreement with the predictions of a deformation mechanism map depicting the flow behavior in the Zn–22 % Al alloy, and the results confirm the importance of GBS as the dominant mechanism of flow in superplasticity after processing by ECAP.


Severe Plastic Deformation Marker Line Grain Boundary Slide Initial Strain Rate Superplastic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.


  1. 1.
    Langdon TG (1982) Metall Trans 13A:689Google Scholar
  2. 2.
    Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A137:35Google Scholar
  3. 3.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  5. 5.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  6. 6.
    Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi: 10.1007/s10853-006-0954-2 CrossRefGoogle Scholar
  7. 7.
    Langdon TG (1994) Acta Metall Mater 42:2437CrossRefGoogle Scholar
  8. 8.
    Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945CrossRefGoogle Scholar
  9. 9.
    Langdon TG (1994) Mater Sci Eng A174:225Google Scholar
  10. 10.
    Vastava RB, Langdon TG (1979) Acta Metall 27:251CrossRefGoogle Scholar
  11. 11.
    Novikov II, Portnoy VK, Terentieva TE (1977) Acta Metall 25:1139CrossRefGoogle Scholar
  12. 12.
    Shariat P, Vastava RB, Langdon TG (1982) Acta Metall 30:285CrossRefGoogle Scholar
  13. 13.
    Lin ZR, Chokshi AH, Langdon TG (1998) J Mater Sci 23:2712. doi: 10.1007/BF00547441 CrossRefGoogle Scholar
  14. 14.
    Islamgaliev RK, Yunusova NF, Valiev RZ, Tsenev NK, Perevezentsev VN, Langdon TG (2003) Scripta Mater 49:467CrossRefGoogle Scholar
  15. 15.
    Kumar P, Xu C, Langdon TG (2005) Mater Sci Eng A410–411:447Google Scholar
  16. 16.
    Kawasaki M, Langdon TG (2008) Mater Trans 49:84CrossRefGoogle Scholar
  17. 17.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143CrossRefGoogle Scholar
  18. 18.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328Google Scholar
  19. 19.
    Kumar P, Xu C, Langdon TG (2006) Mater Sci Eng A429:324Google Scholar
  20. 20.
    Bell RL, Langdon TG (1967) J Mater Sci 2:313. doi: 10.1007/BF00572414 CrossRefGoogle Scholar
  21. 21.
    Langdon TG (1972) Metall Trans 3:797CrossRefGoogle Scholar
  22. 22.
    Bell RL, Graeme-Barber C, Langdon TG (1967) Trans AIME 239:1821Google Scholar
  23. 23.
    Langdon TG (2006) J Mater Sci 41:597. doi: 10.1007/s10853-006-6476-0 CrossRefGoogle Scholar
  24. 24.
    Ishikawa H, Mohamed FA, Langdon TG (1975) Phil Mag 32:1269CrossRefGoogle Scholar
  25. 25.
    Langdon TG (2009) J Mater Sci 44:5998. doi: 10.1007/s10853-009-3780-5 CrossRefGoogle Scholar
  26. 26.
    Mohamed FA, Langdon TG (1981) Acta Metall 29:911CrossRefGoogle Scholar
  27. 27.
    Mohamed FA, Langdon TG (1976) Scripta Metall 10:759CrossRefGoogle Scholar
  28. 28.
    Mohamed FA, Shei SA, Langdon TG (1975) Acta Metall 23:1443CrossRefGoogle Scholar
  29. 29.
    Langdon TG, Mohamed FA (1977) Scripta Metall 11:575CrossRefGoogle Scholar
  30. 30.
    Thompson AW (1972) Metallography 5:366CrossRefGoogle Scholar
  31. 31.
    Kawasaki M, Sklenička V, Langdon TG (2010) J Mater Sci 45:271. doi: 10.1007/s10853-009-3975-9 CrossRefGoogle Scholar
  32. 32.
    Kawasaki M, Balasubramanian N, Langdon TG (2011) Mater Sci Eng A528:6624Google Scholar
  33. 33.
    Ishikawa H, Bhat DG, Mohamed FA, Langdon TG (1977) Metall Trans 8A:523Google Scholar
  34. 34.
    Ahmed MMI, Mohamed FA, Langdon TG (1979) J Mater Sci 14:2913. doi: 10.1007/BF00611474 CrossRefGoogle Scholar
  35. 35.
    Duong K, Mohamed FA (1998) Acta Mater 46:4571CrossRefGoogle Scholar
  36. 36.
    Langdon TG (1981) J Mater Sci 16:2613. doi: 10.1007/BF01113604 CrossRefGoogle Scholar
  37. 37.
    Duong K, Mohamed FA (2001) Metall Mater Trans 32A:103CrossRefGoogle Scholar
  38. 38.
    Kawasaki M, Langdon TG (2009) Mater Sci Eng A503:48Google Scholar
  39. 39.
    Málek P (1999) Mater Sci Eng A268:132Google Scholar
  40. 40.
    Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) Metall Mater Trans A 33A:2173CrossRefGoogle Scholar
  41. 41.
    Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143Google Scholar
  42. 42.
    Xu C, Horita Z, Langdon TG ((2011) Mater Sci Eng A528:6059Google Scholar
  43. 43.
    Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63Google Scholar
  44. 44.
    Xu C, Dixon W, Furukawa M, Horita Z, Langdon TG (2003) Mater Lett 57:3588CrossRefGoogle Scholar
  45. 45.
    Xu C, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 53:749CrossRefGoogle Scholar
  46. 46.
    Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A241:122Google Scholar
  47. 47.
    Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:2128CrossRefGoogle Scholar
  48. 48.
    Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919CrossRefGoogle Scholar
  49. 49.
    Davies PW, Stevens RN, Wilshire B (1965) Nature 206:924CrossRefGoogle Scholar
  50. 50.
    Rachinger WA (1952) J Inst Metals 81:33Google Scholar
  51. 51.
    Langdon TG, Bell RL (1968) Trans AIME 242:2479Google Scholar
  52. 52.
    Ishida Y, Mullendore AW, Grant NJ (1965) Trans AIME 233:204Google Scholar
  53. 53.
    Bell RL, Graeme-Barber C (1970) J Mater Sci 5:933. doi: 10.1007/BF00558172 CrossRefGoogle Scholar
  54. 54.
    Ashby MF (1972) Acta Metall 20:887CrossRefGoogle Scholar
  55. 55.
    Langdon TG, Mohamed FA (1978) J Mater Sci 13:1282. doi: 10.1007/BF00544735 CrossRefGoogle Scholar
  56. 56.
    Mohamed FA, Langdon TG (1974) Metall Trans 5:2339CrossRefGoogle Scholar
  57. 57.
    Langdon TG, Mohamed FA (1978) Mater Sci Eng 32:103CrossRefGoogle Scholar
  58. 58.
    Kawasaki M, Lee S, Langdon TG (2009) Scripta Mater 61:963CrossRefGoogle Scholar
  59. 59.
    Kawasaki M, Langdon TG (2010) Mater Sci Forum 638–642:1965CrossRefGoogle Scholar
  60. 60.
    Kawasaki M, Langdon TG (2011) Mater Sci Eng A528:6140Google Scholar
  61. 61.
    Kawasaki M, Mendes AA, Sordi VL, Ferrante M, Langdon TG (2011) J Mater Sci 46:155. doi: 10.1007/s10853-010-4889-2 CrossRefGoogle Scholar
  62. 62.
    Kawasaki M, Langdon TG (2012) J Mater Sci 47:7726. doi: 10.1007/s10853-012-6507-y CrossRefGoogle Scholar
  63. 63.
    Mohamed FA, Langdon TG (1975) Acta Metall 23:117CrossRefGoogle Scholar
  64. 64.
    Nabarro FRN (1948) Report of a conference on strength of solids. Physical Society, London, p 75Google Scholar
  65. 65.
    Herring C (1950) J Appl Phys 21:437CrossRefGoogle Scholar
  66. 66.
    Coble RL (1963) J Appl Phys 34:1679CrossRefGoogle Scholar
  67. 67.
    Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, p 255Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Materials Research Group, Faculty of Engineering and the Environment University of SouthamptonSouthamptonUK

Personalised recommendations