Journal of Materials Science

, Volume 48, Issue 8, pp 3225–3231 | Cite as

Twinning and orientation relationships of T-phase precipitates in an Al matrix

  • Y. Q. Chen
  • D. Q. Yi
  • Y. Jiang
  • B. Wang
  • D. Z. Xu
  • S. C. Li


The recent increasing interest of T-phase in Al alloy has been switched to its twins. In this study, we employed high resolution transmission electron microscopy to study and compare the morphology and orientation relationships (OR) of T-phase and its twins in an Al–Cu–Mg–Mn alloy. It is found that T-phase tends to form on the {403}Al habit planes and exhibit a rod-like shape, with it longitudinal axis, [010]T, being parallel to the matrix [010]Al direction. Three different OR types are determined between T-phase and Al matrix, namely, {200}T〈010〉T//{200}Al〈010〉Al (OR-I), {200}T〈010〉T//\( \{ 40\bar{3}\}_{\text{Al}} \)〈010〉Al (OR-II), and {200}T〈010〉T//{301}Al〈010〉Al (OR-III). OR-II is the most widely observed OR, while OR-I and III can form from the OR-II by twinning. During the twinning, the cross-section of T-phase transforms from a parallelogram-like shape into a shell-like shape. Further analyses on the shell-like T-twins strongly suggest that tenfold twins could form directly from the successive twinning of an individual T crystal.


High Resolution Transmission Electron Microscopy Orientation Relationship High Resolution Transmission Electron Microscopy Orientation Relationship High Resolution Transmission Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China (Grant No. 51071177) and the Major State Basic Research Projections of China (Grant No. 2012CB619506). We also thank Dr. S.B. Wang for experimental assistance.


  1. 1.
    Zhou MZ, Yi DQ, Liu HQ, Liu WJ, Zheng F (2010) Mater Sci Eng A 527:4070CrossRefGoogle Scholar
  2. 2.
    Okayasu M, Sato K, Mizuno M (2008) J Mater Sci 43:2792. doi: 10.1007/s10853-008-2544-y CrossRefGoogle Scholar
  3. 3.
    Safarkhanian MA, Goodarzi M, Boutorabi SMA (2009) J Mater Sci 44:5452. doi: 10.1007/s10853-009-3735-x CrossRefGoogle Scholar
  4. 4.
    Rioja RJ, Liu J (2012) Metall Mater Trans A 43:3325CrossRefGoogle Scholar
  5. 5.
    Xu Y, Gregson PJ, Sinclair I (2000) Mater Sci Forum 331:1525CrossRefGoogle Scholar
  6. 6.
    Srivatsan TS, Champlin J, Zakrajsek J, Lam PC, Manoharan M (2001) J Mater Eng Perform 10:362CrossRefGoogle Scholar
  7. 7.
    Malekjani S, Hodgson PD, Cizek P, Sabirov I, Hilditch TB (2011) Int J Fatigue 33:700CrossRefGoogle Scholar
  8. 8.
    Liu J (2006) Mater Sci Forum 519–521:1233CrossRefGoogle Scholar
  9. 9.
    Cai YH, Cui H, Zhang JS (2010) Mater Sci Technol 26:352CrossRefGoogle Scholar
  10. 10.
    Liu Q, Chen CZ, Cui JZ (2005) Metall Mater Trans A 36:1389CrossRefGoogle Scholar
  11. 11.
    Li CZ, Wang SC, Jin Y (1992) Acta Metall Sin 5:227Google Scholar
  12. 12.
    Robinson K (1952) Philos Mag 43:775Google Scholar
  13. 13.
    Wang SC, Li CZ, Yan MG (1989) Mater Res Bull 24:1267CrossRefGoogle Scholar
  14. 14.
    Wang SC, Starink MJ (2005) Int Mater Rev 50:193CrossRefGoogle Scholar
  15. 15.
    Mahon GJ, Howe JM, Vasudevan AK (1990) Acta Metall Mater 38:1503CrossRefGoogle Scholar
  16. 16.
    Uygur I (2004) Iranian J Sci Technol Trans B 28:240Google Scholar
  17. 17.
    Kertz JE, Gouma PI, Buchheit RG (2001) Metall Mater Trans A 32:2561CrossRefGoogle Scholar
  18. 18.
    Li Y, Liu ZY, Lin LH, Peng JT, Ning AL (2011) J Mater Sci 46:3708. doi: 10.1007/s10853-010-5143-7 CrossRefGoogle Scholar
  19. 19.
    Feng WX, Lin FS, Starke EA Jr (1984) Metall Mater Trans A 15:1209CrossRefGoogle Scholar
  20. 20.
    Castillo LD, Lavernia EJ (2000) Metall Mater Trans A 31:2287CrossRefGoogle Scholar
  21. 21.
    Starke EA Jr, Lin FS (1982) Metall Mater Trans A 13:2259CrossRefGoogle Scholar
  22. 22.
    Wang LM, Flower HM, Lindley TC (1999) Scripta Mater 41:391CrossRefGoogle Scholar
  23. 23.
    Mukhopadhyay AK, Eggeler G, Skrotzki B (2001) Scripta Mater 44:545CrossRefGoogle Scholar
  24. 24.
    Moy CKS, Weiss M, Xia JH, Sha G, Ringer SP, Ranzi G (2012) Mater Sci Eng A 552:48CrossRefGoogle Scholar
  25. 25.
    Chen ZW, Chen P, Li SS (2012) Mater Sci Eng A 532:606CrossRefGoogle Scholar
  26. 26.
    Zheng ZQ, Cai B, Zhai T, Li SC (2011) Mater Sci Eng A 528:2017CrossRefGoogle Scholar
  27. 27.
    Nie JF (2008) Acta Mater 56:3169CrossRefGoogle Scholar
  28. 28.
    Lee WM, Zikry MA (2011) Metall Mater Trans A 42:1215CrossRefGoogle Scholar
  29. 29.
    Yang P, Engler O, Klaar HJ (1999) J Appl Cryst 32:1105CrossRefGoogle Scholar
  30. 30.
    Zhang WZ, Weatherly GC (2005) Prog Mater Sci 50:181CrossRefGoogle Scholar
  31. 31.
    Zhang WZ, Purdy GR (1993) Philos Mag 68:279CrossRefGoogle Scholar
  32. 32.
    Li XZ, Kuo KH (1992) Philos Mag 66:117CrossRefGoogle Scholar
  33. 33.
    Fung KK, Zou XD, Yang CY (1987) Philos Mag Lett 55:27CrossRefGoogle Scholar
  34. 34.
    Tendeloo GV, Singh A, Ranganathan S (1991) Philos Mag 64:413Google Scholar
  35. 35.
    Xu L, Wang N, Lee ST (2000) Phys Rev B 62:3078CrossRefGoogle Scholar
  36. 36.
    Zou XD, Fung KK, Ku KH (1987) Phys Rev B 35:4526CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Key Lab of Nonferrous Materials, Ministry of EducationCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Thermal Processing Technology CenterIllinois Institute of TechnologyChicagoUSA

Personalised recommendations