Journal of Materials Science

, Volume 48, Issue 14, pp 4823–4833 | Cite as

A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance

  • Rhet C. de Guzman
  • Jinho Yang
  • Mark Ming-Cheng Cheng
  • Steven O. Salley
  • K. Y. Simon Ng


Composite anodes of Si nanoparticles (SiNPs) and reduced graphene oxide (RGO) sheets with highly dispersed SiNPs were synthesized to investigate the performance-related improvements that particle dispersion can impart. Three composites with varying degrees of particle dispersions were prepared using different ultrasonication, and a combination of ultrasonication and surfactant. With more dispersed SiNPs, the capacity retention and rate performance as evaluated by galvanostatic cycling using increasing current density rates (500–2500 mA/g) also improved compared with anodes that have poor particle dispersion. These results demonstrate that better nanoparticle dispersion (small clusters to mono-dispersed particles) between the stable and the highly conducting RGO layers, allows the carbonaceous matrix material to complement the SiNP-Li+ electrochemistry by becoming highly involved in the charge–discharge reaction mechanisms as indicated by chronopotentiometry and cyclic voltammetry (CV). Particle dispersion improvement was confirmed to be a key component in a composite anode design to maximize Si for high-performance lithium ion battery (LIB) application.


Graphene Oxide Discharge Capacity Reduce Graphene Oxide Graphite Oxide Coulombic Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Department of Energy (Grant DE-EE0002106) for this research is gratefully acknowledged.


  1. 1.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  2. 2.
    Obrovac MN, Christensen L (2004) Electrochem Solid-State Lett 7(5):A93CrossRefGoogle Scholar
  3. 3.
    Graetz J, Ahn CC, Yazami R, Fultz B (2003) Electrochem Solid State Lett 6(9):A194CrossRefGoogle Scholar
  4. 4.
    Maranchi JP, Hepp AF, Kumta PN (2003) Electrochem Solid State Lett 6(9):A198CrossRefGoogle Scholar
  5. 5.
    Bourderau S, Brousse T, Scheich DM (1999) J Power Sources 81–82:233CrossRefGoogle Scholar
  6. 6.
    Kulova TL, Skundin AM, Pleskov YV, Terukov EI, Kon’kov OI (2007) J Electroanal Chem 600(1):217CrossRefGoogle Scholar
  7. 7.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31CrossRefGoogle Scholar
  8. 8.
    Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) J Power Sources 189:34CrossRefGoogle Scholar
  9. 9.
    Peng K, Jie J, Zhang W, Lee ST (2008) Appl Phys Lett 93:0331051Google Scholar
  10. 10.
    Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Nano Lett 9(11):3844CrossRefGoogle Scholar
  11. 11.
    Kim H, Han B, Choo J, Cho J (2008) Angew Chem Int Ed 47:10151CrossRefGoogle Scholar
  12. 12.
    Shin HC, Corno JA, Gole JL, Liu M (2005) J Power Sources 139(1–2):314CrossRefGoogle Scholar
  13. 13.
    Kang DK, Corno JA, Gole JL, Shin HC (2008) J Electrochem Soc 155(4):A276CrossRefGoogle Scholar
  14. 14.
    Kim H, Seo M, Park MH, Cho J (2010) Angew Chem 122:2192CrossRefGoogle Scholar
  15. 15.
    Lee JK, Smith KB, Hayner CM, Kung HH (2010) Chem Comm 46:2025CrossRefGoogle Scholar
  16. 16.
    Xiang H, Zhang K, Lee JY, Zou C, Chen X, Wu J (2011) Carbon 49:1787CrossRefGoogle Scholar
  17. 17.
    Chou SL, Wang JZ, Choucair M, Liu HK, Stride JA, Dou SX (2010) Electrochem Comm 12:303CrossRefGoogle Scholar
  18. 18.
    Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) Nano Lett 12(6):3315CrossRefGoogle Scholar
  19. 19.
    Jeong HM, Lee SY, Shin WH, Kwon JH, Shakoor A, Hwang TH, Kim SY, Kong BS, Seo JS, Lee YM, Kang JK, Choi JW (2012) RSC Adv 2:4311CrossRefGoogle Scholar
  20. 20.
    Zhou X, Yin YX, Cao AM, Wan LJ, Guo YG (2012) ACS Appl Mater Interfaces 4:2824CrossRefGoogle Scholar
  21. 21.
    Hwang TH, Lee YM, Kong BS, Seo JK, Choi JW (2012) Nano Lett 12:802CrossRefGoogle Scholar
  22. 22.
    Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR (2012) J Power Sources 206:267CrossRefGoogle Scholar
  23. 23.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) Nat Nanotechnol 3:563CrossRefGoogle Scholar
  24. 24.
    Banhart F, Ajayan PM (1996) Nature 382:433CrossRefGoogle Scholar
  25. 25.
    Park MH, Kim K, Kim J, Cho J (2010) Adv Mater 22(3):415CrossRefGoogle Scholar
  26. 26.
    Dimitrijevic BJ, Aifantis KE, Hackl K (2012) J Power Sources 206:343CrossRefGoogle Scholar
  27. 27.
    Iwamura S, Nishihara H, Kyotani T (2012) J Phys Chem C 116:6004CrossRefGoogle Scholar
  28. 28.
    Aifantis KE, Haycock M, Sanders P, Hackney SA (2012) Mater Sci Eng, A 529:55Google Scholar
  29. 29.
    Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo YJ, Pei N (2000) Solid State Ionics 135:181CrossRefGoogle Scholar
  30. 30.
    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771CrossRefGoogle Scholar
  31. 31.
    Guyomard D, Tarascon JM (1992) J Electrochem Soc 139(4):937CrossRefGoogle Scholar
  32. 32.
    Yoo EJ, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Nano Lett 8(8):2277CrossRefGoogle Scholar
  33. 33.
    Wang G, Shen X, Yoo J, Park J (2009) Carbon 47:2049CrossRefGoogle Scholar
  34. 34.
    Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) Carbon 49(931–936):936Google Scholar
  35. 35.
    Wang C, Li D, Too CO, Wallace GG (2009) Chem Mater 21(13):2604CrossRefGoogle Scholar
  36. 36.
    Guo P, Song HH, Chen XH (2009) Electrochem Comm 11(6):1320CrossRefGoogle Scholar
  37. 37.
    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Chem Mater 21:3136CrossRefGoogle Scholar
  38. 38.
    Kasavajjula U, Wang C, Appleby AJ (2007) J Power Sources 163:1003CrossRefGoogle Scholar
  39. 39.
    Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Electrochem Commun 13:822CrossRefGoogle Scholar
  40. 40.
    Liang S, Zhu X, Lian P, Yang W, Wang H (2011) J Solid State Chem 184:1400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rhet C. de Guzman
    • 1
  • Jinho Yang
    • 2
  • Mark Ming-Cheng Cheng
    • 2
  • Steven O. Salley
    • 1
  • K. Y. Simon Ng
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceWayne State UniversityDetroitUSA
  2. 2.Department of Electrical and Computer EngineeringWayne State UniversityDetroitUSA

Personalised recommendations