Journal of Materials Science

, Volume 48, Issue 8, pp 3107–3120 | Cite as

Morphology-wettability relations in artificially structured superhydrophilic TiO2–SiO2 composite films

  • C. Holtzinger
  • B. Niparte
  • G. Berthomé
  • D. Riassetto
  • M. Langlet


Naturally superhydrophilic TiO2–SiO2 composite films were deposited through a sol–gel route and the morphology of these films was artificially modified by nanosphere lithography using polystyrene spheres. Morphology changes induced by this structuration were studied by optical, scanning electron, and atomic force microscopy. The water wettability of the so-obtained films over aging under ambient atmosphere was then studied with respect to the sol composition and morphological features. This study i/confirms the assumption of a natural superhydrophilicity of composite films intrinsically induced by TiO2–SiO2 granular interfaces and ii/shows that this property can be greatly improved by artificially induced morphology features. Such features are discussed on the basis of well-established surface thermodynamic models.


TiO2 Composite Film Water Contact Angle Water Wettability Crystalline Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Permpoon S, Berthomé G, Baroux B, Joud JC, Langlet M (2006) J Mater Sci 41:7650. doi: 10.1007/s10853-006-0858-1 CrossRefGoogle Scholar
  2. 2.
    Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthomé G, Joud JC, Langlet M (2007) Appl Surf Sci 254:1405. doi: 10.1016/j.apsusc.2007.06.072 CrossRefGoogle Scholar
  3. 3.
    Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthomé G, Joud JC, Langlet M (2008) Surf Sci 602:3364. doi: 10.1016/j.susc.2008.09.016 CrossRefGoogle Scholar
  4. 4.
    Houmard M, Berthomé G, Joud JC, Langlet M (2011) Surf Sci 605:456. doi: 10.1016/j.susc.2010.11.017 CrossRefGoogle Scholar
  5. 5.
    Holtzinger C, Rapenne L, Chaudouët P, Berthomé G, Joud JC, Langlet M (2012) Emerg Mater Res 1:127. doi: 10.1680/emr.11.00024 CrossRefGoogle Scholar
  6. 6.
    Holtzinger C, Rapenne L, Chaudouët P, Berthomé G, Langlet M (2012). J Sol–Gel Sci Technol. doi: 10.1007/s10971-012-2878-4
  7. 7.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33CrossRefGoogle Scholar
  8. 8.
    Itoh M, Hattori H, Tanabe K (1974) J Catal 35:225. doi: 10.1016/0021-9517(74)90201-2 CrossRefGoogle Scholar
  9. 9.
    Tanabe K, Sumiyoshi T, Shibata K, Kiyoura T, Kitagawa J (1974) Bull Chem Soc Jpn 47:1064CrossRefGoogle Scholar
  10. 10.
    Kataoka T, Dumesic JA (1988) J Catal 112:66CrossRefGoogle Scholar
  11. 11.
    Sohn JR, Jang HJ (1991) J Catal 132:563CrossRefGoogle Scholar
  12. 12.
    Liu ZF, Tabora J, Davis RJ (1994) J Catal 149:117CrossRefGoogle Scholar
  13. 13.
    Gao X, Wachs IE (1999) Catal Today 51:233. doi: 10.1016/s0920-5861(99)00048-6 CrossRefGoogle Scholar
  14. 14.
    Contescu CI, Schwarz JA (2000) In: Mittal KL (ed) Acid-base interactions: relevance to adhesion science and technology, vol 2. VSP BV, Zeist, p 245Google Scholar
  15. 15.
    De Gennes PG, Brochard-Wyart F, Quéré D (2002) Gouttes, bulles, perles et ondes. Belin, ParisGoogle Scholar
  16. 16.
    Wenzel RN (1936) Ind Eng Chem 28:988. doi: 10.1021/ie50320a024 CrossRefGoogle Scholar
  17. 17.
    Bico J, Tordeux C, Quéré D (2001) EPL (Europhys Lett) 55:214CrossRefGoogle Scholar
  18. 18.
    Bico J, Thiele U, Quéré D (2002) Colloids Surf A 206:41CrossRefGoogle Scholar
  19. 19.
    Villaescusa LA, Mihi A, Rodríguez I, García-Bennett AE, Míguez H (2005) J Phys Chem B 109:19643. doi: 10.1021/jp053511m CrossRefGoogle Scholar
  20. 20.
    Zhang G, Wang D, Gu Z-Z, Möhwald H (2005) Langmuir 21:9143. doi: 10.1021/la0511945 CrossRefGoogle Scholar
  21. 21.
    Xiu Y, Zhu L, Hess DW, Wong CP (2006) Langmuir 22:9676. doi: 10.1021/la061698i CrossRefGoogle Scholar
  22. 22.
    Deckman HW, Dunsmuir JH (1982) Appl Phys Lett 41:377CrossRefGoogle Scholar
  23. 23.
    Hulteen JC, Duyne RPV (1995) J Vac Sci Technol A 13:1553CrossRefGoogle Scholar
  24. 24.
    Rybczynski J, Ebels U, Giersig M (2003) Colloids Surf A 219:1CrossRefGoogle Scholar
  25. 25.
    Russell BK, Mantovani JG, Anderson VE, Warmack RJ, Ferrell TL (1987) Phys Rev B 35:2151CrossRefGoogle Scholar
  26. 26.
    Buncick MC, Warmack RJ, Ferrell TL (1987) J Opt Soc Am B 4:927CrossRefGoogle Scholar
  27. 27.
    Vanduyne RP, Hulteen JC, Treichel DA (1993) J Chem Phys 99:2101. doi: 10.1063/1.465276 CrossRefGoogle Scholar
  28. 28.
    Wang X, Summers CJ, Wang ZL (2004) Nano Lett 4:423. doi: 10.1021/nl035102c CrossRefGoogle Scholar
  29. 29.
    Kempa K, Kimball B, Rybczynski J, Huang ZP, Wu PF, Steeves D, Sennett M, Giersig M, Rao DVGLN, Carnahan DL, Wang DZ, Lao JY, Li WZ, Ren ZF (2002) Nano Lett 3:13. doi: 10.1021/nl0258271 CrossRefGoogle Scholar
  30. 30.
    Denkov N, Velev O, Kralchevski P, Ivanov I, Yoshimura H, Nagayama K (1992) Langmuir 8:3183. doi: 10.1021/la00048a054 CrossRefGoogle Scholar
  31. 31.
    Colson P, Cloots R, Henrist C (2011) Langmuir 27:12800. doi: 10.1021/la202284a CrossRefGoogle Scholar
  32. 32.
    Mihi A, Ocaña M, Míguez H (2006) Adv Mater 18:2244. doi: 10.1002/adma.200600555 CrossRefGoogle Scholar
  33. 33.
    Prevo BG, Kuncicky DM, Velev OD (2007) Colloids Surf A 311:2CrossRefGoogle Scholar
  34. 34.
    Langlet M, Burgos M, Coutier C, Jimenez C, Morant C, Manso M (2001) J Sol–Gel Sci Technol 22:139. doi: 10.1023/a:1011232807842 CrossRefGoogle Scholar
  35. 35.
    Langlet M, Kim A, Audier M, Guillard C, Herrmann JM (2003) J Mater Sci 38:3945. doi: 10.1023/a:1026150213468 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • C. Holtzinger
    • 1
    • 2
  • B. Niparte
    • 1
  • G. Berthomé
    • 2
  • D. Riassetto
    • 1
  • M. Langlet
    • 1
  1. 1.LMGP (Grenoble Institute of Technology)Grenoble Cedex 1France
  2. 2.SIMaP (Grenoble Institute of Technology)Saint Martin d’HèresFrance

Personalised recommendations