Advertisement

Journal of Materials Science

, Volume 48, Issue 6, pp 2714–2723 | Cite as

Microstructural characterization of Co-based coating deposited by low power pulse laser cladding

  • A. Farnia
  • F. Malek Ghaini
  • V. Ocelík
  • J. Th. M. De Hosson
Article

Abstract

A detailed microstructural study of Stellite 6 coating deposited on a low carbon ferritic steel substrate using preplaced powder method and low power Nd:YAG pulse laser is performed. The grain structure and solidification texture of the coating are investigated by orientation imaging microscopy (OIM) and scanning electron microscopy. In addition, the effect of consecutive pulses on the microstructure of the coating is examined. The orientation relationship (OR) at coating/substrate interface and the solid state phase transformation in heat-affected zone are studied as well as the Vickers microhardness profile measurement in order to support the microstructural observations. An important conclusion is reached that the shape of solidification front during pulsed laser cladding is similar to the shape of solidification front during continuous cladding with a doubled laser beam scanning speed. Further, OIM reveals the Greninger–Troiano OR between the face centered cubic coating and bcc substrate grains. It is concluded that at the moment of solidification epitaxial growth of the grains in the coating occur on the austenitic grains of the substrate and that an austenite–ferrite transformation occurs in the heat-affected zone upon subsequent cooling.

Keywords

Ferrite Austenite Orientation Relationship Solidification Front Laser Cladding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was a collaborative effort of the Tarbiat Modares University in Tehran and the Materials innovation institute M2i (www.m2i.nl) where it was carried out under project number MC7.06259.

References

  1. 1.
    Chen J, Wang SH, Xue L (2012) J Mater Sci 47:779. doi: 10.1007/s10853-011-5854-4 CrossRefGoogle Scholar
  2. 2.
    Zhu LN, Xu BS, Wang HD, Wang CB (2012) J Mater Sci 47:2122. doi: 10.1007/s10853-011-6012-8 CrossRefGoogle Scholar
  3. 3.
    Hemmati I, Ocelík V, De Hosson JThM (2011) J Mater Sci 46:3405. doi: 10.1007/s10853-010-5229-2 CrossRefGoogle Scholar
  4. 4.
    Ion JC (2005) Laser processing of laser materials. Elsevier Butterworth–Heinemann, AmsterdamGoogle Scholar
  5. 5.
    Schneider M (1990) Laser cladding with powder. Ph.D. thesis, University of Twente, EnschedeGoogle Scholar
  6. 6.
    Paital SR, Bunce N, Nandwana P, Honrao C, Nag S, He W, Banerjee R, Dahotre NB (2011) J Mater Sci Mater Med 22:1393CrossRefGoogle Scholar
  7. 7.
    Shivamurthy RC, Kamaraj M, Nagarajan R, Shariff SM, Padmanabham G (2010) Metall Mater Trans A 47A:470CrossRefGoogle Scholar
  8. 8.
    Paital SR, He W, Dahotre NB (2010) J Mater Sci Mater Med 21:2187CrossRefGoogle Scholar
  9. 9.
    Gedda H (2004) Laser cladding: an experimental and theoretical investigation. Ph.D. thesis, Luleå University of Technology, LuleåGoogle Scholar
  10. 10.
    Powell J, Henry PS, Steen WM (1988) Surf Eng 4:141Google Scholar
  11. 11.
    Sun S, Durandet Y, Brandt M (2005) Surf Coat Technol 194:225CrossRefGoogle Scholar
  12. 12.
    Yevko V, Park CB, Zak G, Coyle TW, Benhabib B (1998) Rapid Prototyp J 4:168CrossRefGoogle Scholar
  13. 13.
    Yang Y, Song Y, Wu W, Wang M (1998) Thin Solid Films 323:199CrossRefGoogle Scholar
  14. 14.
    Pinkerton AJ, Li L (2003) Appl Surf Sci 208–209:405CrossRefGoogle Scholar
  15. 15.
    Tsai HL, Tsai PC (1995) Surf Coat Technol 71:53CrossRefGoogle Scholar
  16. 16.
    Kumar VC (2006) Surf Coat Technol 201:3174CrossRefGoogle Scholar
  17. 17.
    Arabi Jeshvaghani R, Shamanian M, Jaberzadeh M (2011) Mater Des 32:2028CrossRefGoogle Scholar
  18. 18.
    Liu R, Xi SQ, Kapoor S, Wu XJ (2010) J Mater Sci 45:6225. doi: 10.1007/s10853-010-4717-8 CrossRefGoogle Scholar
  19. 19.
    Frenk A, Kurz W (1994) Wear 174:81CrossRefGoogle Scholar
  20. 20.
    Dingely DJ (2000) In: Schwartz AJ, Kumar M, Adams BL (eds) Electron backscattered diffraction in materials science. Kluwer Academic/Plenum, New York, p 1Google Scholar
  21. 21.
    Ocelík V, Furár I, De Hosson JThM (2010) Acta Mater 58:6763CrossRefGoogle Scholar
  22. 22.
    Dinda GP, Dasgupta AK, Mazumder J (2012) Surf Coat Technol 206:2152CrossRefGoogle Scholar
  23. 23.
    Wright SI, Fied DP, Dingley DJ (2000) In: Schwartz AJ, Kumar M, Adams BL (eds) Electron backscattered diffraction in materials science. Kluwer Academic/Plenum, New York, p 141Google Scholar
  24. 24.
    Wright SI, Nowell MM (2006) Microsc Microanal 12:72CrossRefGoogle Scholar
  25. 25.
    Kou S (2003) Welding metallurgy, 2nd edn. Wiley, HobokenGoogle Scholar
  26. 26.
    Moat RJ, Pinkerton AJ, Li L, Withers PJ, Preuss M (2009) Acta Mater 57:1220CrossRefGoogle Scholar
  27. 27.
    Kurz W, Fisher DJ (1986) Fundamentals of solidification. Trans Tech Publications, ZurichGoogle Scholar
  28. 28.
    Kurdjumow G, Sachs G (1930) Z Phys 64:325CrossRefGoogle Scholar
  29. 29.
    Nishiyama Z (1934) Sci Rep Tohoku Imp Univ Tokyo 26:637Google Scholar
  30. 30.
    Wassermann G (1935) Mitt K-Wilh-Inst Eisenforsch 17:149Google Scholar
  31. 31.
    Greninger AB, Troiano AR (1949) J Met Trans 185:590Google Scholar
  32. 32.
    Nolze G (2004) Z Metallkd 95:744Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Materials innovation institute M2i, Department of Applied PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations