Journal of Materials Science

, Volume 48, Issue 6, pp 2618–2623 | Cite as

Structural, optical, and magnetic characterization of Co and N co-doped ZnO nanopowders

  • Sanjeev Kumar
  • C. L. Chen
  • C. L. Dong
  • Y. K. Ho
  • J. F. Lee
  • T. S. Chan
  • R. Thangavel
  • T. K. Chen
  • B. H. Mok
  • S. M. Rao
  • M. K. Wu


Co and N co-doped ZnO nanopowders with Co and N concentration 4, 6, and 8 mol% were synthesized by sol–gel method. Powder X-ray diffraction reveals that Co and N co-doped ZnO crystallize in wurtzite structure having space group C 6v . Photo-luminescence studies show the reduction in band gap with increase in concentration of dopants. Micro Raman studies show the red shift for 1LO phonon peak with increase in doping, generally credited to the stress caused by lattice mismatch due to N doping in ZnO. X-ray absorption spectroscopy reveals that Co replaces the Zn atoms and N replace the O atoms in the host ZnO lattice. Magnetic studies show that Co and N co-doped ZnO nanopowders exhibit ferromagnetic character at room temperature.


Co3O4 Zinc Acetate Dihydrate Cobalt Acetate Tetrahydrate National Synchrotron Radiation Research Center Spherical Grating Monochromator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by Academia Sinica and National Science Council, Taiwan, Republic of China, under the Grant number NSC98-2811-M-001-106. One of the authors, Sanjeev Kumar, is also thankful to IOP, Academia Sinica, Taipei for financial support.


  1. 1.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnar SV, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488CrossRefGoogle Scholar
  2. 2.
    Furdyna JK (1988) J Appl Phys 64:R29CrossRefGoogle Scholar
  3. 3.
    Ohno H (1998) Science 281:951CrossRefGoogle Scholar
  4. 4.
    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019CrossRefGoogle Scholar
  5. 5.
    Jeong SH, Kim BS, Lee BT (2003) Appl Phys Lett 82:2625CrossRefGoogle Scholar
  6. 6.
    Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J, Boatner LA (2003) J Appl Phys 93:1CrossRefGoogle Scholar
  7. 7.
    Sato K, Katayama-Yoshida H (2000) Jpn J Appl Phys 39:L555CrossRefGoogle Scholar
  8. 8.
    Sato K, Katayama-Yoshida H (2001) Jpn J Appl Phys 40:L334CrossRefGoogle Scholar
  9. 9.
    Ueda K, Tabata H, Kawai T (2001) Appl Phys Lett 79:988CrossRefGoogle Scholar
  10. 10.
    Prellier W, Fouchet A, Mercey B, Simon Ch, Raveau B (2003) Appl Phys Lett 82:3490CrossRefGoogle Scholar
  11. 11.
    Kim JH, Kim H, Kim D, Ihm YM, Choo WK (2003) Phys B 327:304CrossRefGoogle Scholar
  12. 12.
    Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim JG, Park YD, Wilson RG (2003) Appl Phys Lett 83:5488CrossRefGoogle Scholar
  13. 13.
    Spaldin NA (2004) Phys Rev B 69:125201CrossRefGoogle Scholar
  14. 14.
    Matsui H, Saeki H, Kawai T, Tabata H, Mizobuchi B (2004) J Appl Phys 95:5882CrossRefGoogle Scholar
  15. 15.
    Ma JG, Liu YC, Mu R, Zhang JY, Lu YM, Shen DZ, Fan XW (2004) J Vac Sci Technol B 22:94CrossRefGoogle Scholar
  16. 16.
    Yuldashev SU, Igamberdiev KT, Kang TW, Pelenovich WO, Shashkov AG (2008) Appl Phys Lett 93:092503CrossRefGoogle Scholar
  17. 17.
    Wang Q, Sun Q, Jena P, Kawazoe Y (2004) Phys Rev B 70:052408CrossRefGoogle Scholar
  18. 18.
    Assadi MHN, Zhang YB, Li S (2009) J Phys 21:185503Google Scholar
  19. 19.
    Assadi MHN, Zhang YB, Li S (2009) J Appl Phys 105:043906CrossRefGoogle Scholar
  20. 20.
    Liu SM, Gu SL, Ye JD, Zhu SM, Liu W, Tang K, Shan ZP, Zhang R, Zheng YD, Sun XW (2008) Appl Phys A 91:535CrossRefGoogle Scholar
  21. 21.
    Lu ZL, Mo ZR, Zou WQ, Wang S, Yan GQ, Liu XC, Lin YB, Xu JP, Lv LY, Wu XM, Xia ZH, Xu MX, Zhang FM, Du YW (2008) J Phys D 41:115008CrossRefGoogle Scholar
  22. 22.
    Xu HY, Liu YC, Xu CS, Liu YX, Shao CL, Mu R (2006) Appl Phys Lett 88:242502CrossRefGoogle Scholar
  23. 23.
    Yan W, Sun Z, Liu Q, Li Z, Shi T, Wang F, Qi Z, Zhang G, Wei S, Zhang H, Chen Z (2007) Appl Phys Lett 90:242509CrossRefGoogle Scholar
  24. 24.
    Lee Y, Lee JC, Su CW (2010) IEEE Trans Magn 46:1565CrossRefGoogle Scholar
  25. 25.
    Futsuhara M, Yoshioka K, Takai O (1988) Thin Solid Films 317:322CrossRefGoogle Scholar
  26. 26.
    Liu XJ, Song C, Zeng F, Pan F (2008) Thin Solid Films 516:8757CrossRefGoogle Scholar
  27. 27.
    Yoo YZ, Fukumura T, Jin Z, Hasegawa K, Kawasaki M, Ahmet P, Chikyow T, Koinuma H (2001) J Appl Phys 90:4246CrossRefGoogle Scholar
  28. 28.
    Thakur P, Chae KH, Kim JY, Subramanian M, Jayavel R, Asokan K (2007) Appl Phys Lett 91:162503CrossRefGoogle Scholar
  29. 29.
    Lee EYM, Tran N, Russell J, Lamp RN (2002) J Appl Phys 92:2996CrossRefGoogle Scholar
  30. 30.
    Munekata H, Abe T, Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H (1997) J Appl Phys 81:4862CrossRefGoogle Scholar
  31. 31.
    Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H (1997) Phys Rev Lett 78:4617CrossRefGoogle Scholar
  32. 32.
    Yang LW, Wu XL, Qiu T, Siu GG, Chu PK (2006) J Appl Phys 99:074303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sanjeev Kumar
    • 1
  • C. L. Chen
    • 2
  • C. L. Dong
    • 3
  • Y. K. Ho
    • 2
    • 3
  • J. F. Lee
    • 3
  • T. S. Chan
    • 3
  • R. Thangavel
    • 4
    • 5
  • T. K. Chen
    • 2
  • B. H. Mok
    • 2
  • S. M. Rao
    • 2
  • M. K. Wu
    • 2
  1. 1.University College of EngineeringPunjabi UniversityPatialaIndia
  2. 2.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  3. 3.National Synchrotron Radiation Research Center (NSRRC)HsinchuTaiwan
  4. 4.Research Centre for Applied SciencesAcademia SinicaTaipeiTaiwan
  5. 5.Department of Applied ScienceIndian school of MinesDhanbadIndia

Personalised recommendations