Journal of Materials Science

, Volume 48, Issue 6, pp 2318–2325 | Cite as

The coupling effects of thermal cycling and high current density on Sn58Bi solder joints

  • Yong Zuo
  • Limin Ma
  • Sihan Liu
  • Ting Wang
  • Fu Guo
  • Xitao Wang


Currently, one of the serious challenges in microelectronic devices is the miniaturization trend of packaging. As the decrease of joint dimension, electromigration (EM) and thermomechanical fatigue become critical issues for fine pitch packaging. The independent mechanisms of EM and thermomechanical fatigue are widely investigated and understood. However, the coupling effect of both conditions needs further exploration. The current study established the correlation between resistance and microstructure evolution of solder joint under the combination effect of thermal cycling and high current density and illustrated the different contributions of these two factors to the reliability of the joint through the comparison monopoly tests. The results revealed that cracks had more impact on resistance increase than phase segregation. The resistance evolution could be divided into three stages. First, the resistance mitigated due to the phase coarsening. Second, Joule heating effect made the resistance increase slowly. Third, EM led to the resistance increase rapidly. The high current density can help to improve the reliability of the solder joint under the coupling effect of thermal cycling and EM at the initial stage, but harmful to the consequence process.


Solder Joint High Current Density Solder Matrix Phase Segregation Thermomechanical Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of this work from National Natural Science Foundation of China (Grant No. 51071006) and Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ200910005004).


  1. 1.
    Plumbridge WJ (1996) J Mater Sci 31(10):2501. doi: 10.1007/BF00687275 CrossRefGoogle Scholar
  2. 2.
    Lee JG, Subramanian KN (2003) J Electron Mater 32(6):523CrossRefGoogle Scholar
  3. 3.
    Liu J, Salmela O, Sarkka J, Morris JE, Tegehall PE, Andersson C (2011) Reliability of microtechnology: interconnects, devices and systems. Springer, New YorkGoogle Scholar
  4. 4.
    Miao HW, Duh JG, Chiou BS (2000) J Mater Sci 11(8):609. doi: 10.1023/A:1008928729212 Google Scholar
  5. 5.
    Pang HLJ, Tan KH, Shi XQ, Wang ZP (2001) Mater Sci Eng A Struct 307(1–2):42CrossRefGoogle Scholar
  6. 6.
    Pang JHL, Low TH, Xiong BS, Luhua X, Neo CC (2004) Thin Solid Films 462:370CrossRefGoogle Scholar
  7. 7.
    Chen C, Tong HM, Tu KN (2010) Annu Rev Mater Res 40(1):531CrossRefGoogle Scholar
  8. 8.
    Ma LM, Xu GC, Sun J, Guo F, Wang XT (2011) J Mater Sci 46(14):4896. doi: 10.1007/s10853-011-5401-3 CrossRefGoogle Scholar
  9. 9.
    Lee A, Liu W, Ho CE, Subramanian KN (2007) J Appl Phys 102(5):053507CrossRefGoogle Scholar
  10. 10.
    Ho CE, Lee A, Subramanian KN, Liu W (2007) Appl Phys Lett 91(2):021906CrossRefGoogle Scholar
  11. 11.
    Chen C, Liang SW (2007) J Mater Sci 18(1–3):259. doi: 10.1007/978-0-387-48433-4_17 Google Scholar
  12. 12.
    Ma LM, Guo F, Xu GC, Wang XT, He HW, Zhao HY (2012) J Electron Mater 41(2):425CrossRefGoogle Scholar
  13. 13.
    Zhou W, Liu L, Li B, Wu P (2010) Thin Solid Films 518(20):5875CrossRefGoogle Scholar
  14. 14.
    He HW, Xu GC, Guo F (2010) J Mater Sci 45(4):929. doi: 10.1007/s10853-009-4022-6 CrossRefGoogle Scholar
  15. 15.
    Liu HY, Zhu QS, Wang ZG, Shang JK (2011) Mater Sci Eng Struct 528(3):1467CrossRefGoogle Scholar
  16. 16.
    Choi WJ, Yeh ECC, Tu KN (2003) J Appl Phys 94(9):5665CrossRefGoogle Scholar
  17. 17.
    Cook B, Anderson I, Harringa J, Kang S (2003) J Electron Mater 32(12):1384CrossRefGoogle Scholar
  18. 18.
    Sun J, Xu GC, Guo F (2011) J Mater Sci 46(10):3544. doi: 10.1007/s10853-011-5265-6 CrossRefGoogle Scholar
  19. 19.
    He HW, Xu GC, Guo F (2010) J Mater Sci 45(2):334. doi: 10.1007/s10853-009-3939-0 CrossRefGoogle Scholar
  20. 20.
    Agarwal R, Ou SE, Tu KN (2006) J Appl Phys 100(2):024909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yong Zuo
    • 1
  • Limin Ma
    • 1
  • Sihan Liu
    • 1
  • Ting Wang
    • 1
  • Fu Guo
    • 1
  • Xitao Wang
    • 2
  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China
  2. 2.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations