Journal of Materials Science

, Volume 48, Issue 5, pp 2053–2066 | Cite as

UPRM-5 titanium silicates prepared using tetrapropylammonium and tetrabutylammonium cations: framework stability, textural properties, and carbon dioxide adsorption

  • Marietta E. Marcano-González
  • José N. Primera-Pedrozo
  • Zulmarie Jiménez-Laureano
  • Riqiang Fu
  • Arturo J. Hernández-Maldonado


UPRM-5 is a flexible titanium silicate first prepared using tetraethylammonium (TEA+) and that exhibited improved structural and adsorption properties when compared to other titanium silicates. In order to further tailor these properties, we have employed tetrapropylammonium (TPA+) and tetrabutylammonium (TBA+), as structure directing agents (SDAs), respectively. Analysis of the local-range structure using 29Si magic angle spinning nuclear magnetic resonance spectroscopy suggested silicon environments corresponding to Si(2Si, 2Tiocta) and Si(3Si, 1Tisemi-octa), as expected for a flexible titanium silicate. A quantitative analysis, however, revealed that the amount of semi-octahedral titanium centers was greater in the variant prepared with TPA+ suggesting that the nature of the NR4 + cation plays an important role in the formation of framework faulting. Both UPRM-5 variants were detemplated and modified to include extraframework Sr2+ and produce materials for carbon dioxide adsorption. Their thermal stability and pore contraction were first investigated by means of in situ high-temperature X-ray powder diffraction and nitrogen porosimetry. Materials prepared with TBA+ showcased better thermal stability when compared to variants prepared with TPA+ and even TEA+, probably due to the relative low level of structural faulting. All variants, however, displayed a pore contraction process associated with the release of tenacious water. Carbon dioxide uptakes varied considerably depending on the choice of SDA employed and the isosteric heat of adsorption profiles correlated with a heterogeneous surface. The results suggest that Sr2+–UPRM-5 (TPA) materials could be tailored for purification applications, whereas Sr2+–UPRM-5 (TBA) materials could be tailored for bulk-level separation applications.


Thermal Gravimetric Analysis Isosteric Heat External Surface Area Diffuse Reflectance Infrared Fourier Transform Micropore Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This publication is based upon work supported by the National Aeronautics and Space Administration under Grant No. NNX09AV05A. Partial support was also provided by the National Science Foundation (NSF) under Grant No. HRD 0833112 (CREST Program). We also wish to acknowledge support from the PR-LSAMP Bridge to the Doctorate Program and the Puerto Rico Institute for Functional Nanomaterials. The NMR measurements were performed at the National High Magnetic Field Laboratory (NHMFL) supported by NSF Cooperative Agreement No. DMR-0654118, the State of Florida, and the U.S. Department of Energy.


  1. 1.
    Davis SJ, Caldeira K, Matthews HD (2010) Science 329:1330CrossRefGoogle Scholar
  2. 2.
    Stevens RW, Siriwardane RV, Logan J (2008) Energy Fuel 22:3070CrossRefGoogle Scholar
  3. 3.
    Pillai RS, Peter SA, Jasra RV (2008) Microporous Mesoporous Mater 113:268CrossRefGoogle Scholar
  4. 4.
    Abanades JC, Rubin ES, Anthony EJ (2004) Ind Eng Chem Res 43:3462CrossRefGoogle Scholar
  5. 5.
    Cavenati S, Grande CA, Lopes FVS, Rodrigues AE (2009) Microporous Mesoporous Mater 121:114CrossRefGoogle Scholar
  6. 6.
    Bao Z, Yu L, Dou T et al (2011) J Chem Eng Data 56:4017CrossRefGoogle Scholar
  7. 7.
    Primera-Pedrozo JN, Torres-Cosme BD, Clardy ME, Rivera-Ramos ME, Hernández-Maldonado AJ (2010) Ind Eng Chem Res 49:7515CrossRefGoogle Scholar
  8. 8.
    Primera-Pedrozo JN, Guerrero-Medina KJ, Fu R, Hernandez-Maldonado AJ (2011) Dalton Trans 40:3547CrossRefGoogle Scholar
  9. 9.
    Kuznicki SM, Bell VA, Nair S et al (2001) Nature 412:720CrossRefGoogle Scholar
  10. 10.
    Braunbarth C, Hillhouse HW, Nair S et al (2000) Chem Mater 12:1857CrossRefGoogle Scholar
  11. 11.
    Nair S, Tsapatsis M, Toby BH, Kuznicki SM (2001) J Am Chem Soc 123:12781CrossRefGoogle Scholar
  12. 12.
    Anson A, Lin CCH, Kuznicki SM, Sawada JA (2009) Chem Eng Sci 64:3683CrossRefGoogle Scholar
  13. 13.
    Pavel CC, Vuono D, Catanzaro L et al (2002) Microporous Mesoporous Mater 56:227CrossRefGoogle Scholar
  14. 14.
    Pavel CC, Nagy JB, Bilba N et al (2004) Microporous Mesoporous Mater. 71: 77Google Scholar
  15. 15.
    Takewaki T, Beck LW, Davis ME (1999) J Phys Chem B 103:2674CrossRefGoogle Scholar
  16. 16.
    Lippens BC, de Boer JH (1965) J Catal 4:319CrossRefGoogle Scholar
  17. 17.
    de Boer JH, Linsen BG, Osinga TJ (1965) J Catal 4:643CrossRefGoogle Scholar
  18. 18.
    de Boer JH, Linsen BG, van der Plas T, Zondervan GJ (1965) J Catal 4:649CrossRefGoogle Scholar
  19. 19.
    Sips R (1948) J Chem Phys 16:490CrossRefGoogle Scholar
  20. 20.
    Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, LondonCrossRefGoogle Scholar
  21. 21.
    Kapoor A, Ritter JA, Yang RT (1989) Langmuir 5:1118CrossRefGoogle Scholar
  22. 22.
    Yang RT (1997) Gas separation by adsorption processes. Imperial College Press, River EdgeGoogle Scholar
  23. 23.
    Benito P, Labajos FM, Rocha J, Rives V (2006) Microporous Mesoporous Mater 94:148CrossRefGoogle Scholar
  24. 24.
    Tompsett GA, Conner WC, Yngvesson KS (2006) ChemPhysChem 7:296CrossRefGoogle Scholar
  25. 25.
    Losilla JA, Balkusand KJ (2009) J Porous Mater 16:487CrossRefGoogle Scholar
  26. 26.
    Anuwattana R, Balkus KJ Jr, Asavapisit S, Khummongkol P (2008) Microporous Mesoporous Mater 111:260CrossRefGoogle Scholar
  27. 27.
    Lin CCH, Sawada JA, Wu L, Haastrup T, Kuznicki SM (2008) J Am Chem Soc 131:609CrossRefGoogle Scholar
  28. 28.
    Zhang Y-Q, Zhou W, Liu S, Navrotsky A (2011) Chem Mater 23:1166CrossRefGoogle Scholar
  29. 29.
    Ferdov S (2010) Langmuir 26:2684CrossRefGoogle Scholar
  30. 30.
    Philippou A, Anderson MW (1996) Zeolites 16:98CrossRefGoogle Scholar
  31. 31.
    Balmer ML, Bunker BC, Wang LQ, Peden CHF, Su YL (1997) J Phys Chem B 101:9170CrossRefGoogle Scholar
  32. 32.
    Labouriau A, Higley TJ, Earl WL (1998) J Phys Chem B 102:2897CrossRefGoogle Scholar
  33. 33.
    Akolekar DB, Bhargava S, Bronswijk WV (1999) Appl Spectrosc 53:931CrossRefGoogle Scholar
  34. 34.
    Armaroli T, Busca G, Milella F et al (2000) J Mater Chem 10:1699CrossRefGoogle Scholar
  35. 35.
    Cruciani G, De Luca P, Nastro A, Pattison P (1998) Microporous Mesoporous Mater 21:143CrossRefGoogle Scholar
  36. 36.
    Usseglio S, Calza P, Damin A et al (2006) Chem Mater 18:3412CrossRefGoogle Scholar
  37. 37.
    Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New YorkGoogle Scholar
  38. 38.
    Baes CF, Mesmer RE (1986) The hydrolysis of cations. R.E. Krieger, MalabarGoogle Scholar
  39. 39.
    Xu H, Zhang Y, Navrotsky A (2001) Microporous Mesoporous Mater 47:285CrossRefGoogle Scholar
  40. 40.
    Miraglia PQ, Yilmaz B, Warzywoda J, Bazzana S, Sacco A Jr (2004) Microporous Mesoporous Mater 69:71CrossRefGoogle Scholar
  41. 41.
    Breck DW (1973) Zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  42. 42.
    Rivera-Ramos ME, Ruiz-Mercado GJ, Hernandez-Maldonado AJ (2008) Ind Eng Chem Res 47:5602CrossRefGoogle Scholar
  43. 43.
    Aguilar-Armenta G, Hernandez-Ramirez G, Flores-Loyola E et al (2001) J Phys Chem B 105:1313CrossRefGoogle Scholar
  44. 44.
    Sinai JJ (1964) J Chem Phys 40:3596CrossRefGoogle Scholar
  45. 45.
    Snook IK, Spurling TH (1972) J Chem Soc, Faraday Trans 68:1359CrossRefGoogle Scholar
  46. 46.
    Allen MP (1984) Mol Phys 52:717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Marietta E. Marcano-González
    • 1
  • José N. Primera-Pedrozo
    • 2
  • Zulmarie Jiménez-Laureano
    • 2
  • Riqiang Fu
    • 3
  • Arturo J. Hernández-Maldonado
    • 2
  1. 1.Department of Civil EngineeringUniversity of Puerto RicoMayagüezUSA
  2. 2.Department of Chemical EngineeringUniversity of Puerto RicoMayagüezUSA
  3. 3.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations