Journal of Materials Science

, Volume 48, Issue 5, pp 2038–2045 | Cite as

Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution

  • Rika Okaji
  • Shota Sakashita
  • Kohei Tazumi
  • Kentaro Taki
  • Shinsuke Nagamine
  • Masahiro Ohshima


Interconnected submicron pores were created on the walls of a honeycomb monolith structure by the unidirectional freezing of a binary polymer solution. Agglomerated globules of polyethylene glycol (PEG) in a binary solution of polystyrene (PS) and PEG in 1,4-dioxane solvent were frozen unidirectionally in a liquid nitrogen bath. Removing the frozen solvent and the agglomerated globules of PEG by freeze-drying and leaching, respectively, enabled us to create interconnected pores in the PS walls. The combination of PS and PEG was effective in creating interconnected pores in the walls because PS and PEG are poorly soluble in one another. The higher freezing rate and lower PEG weight fraction of the binary solution effectively reduced the pore size in the microtube walls.


Polymer Solution PLLA Dynamic Light Scattering Measurement Freezing Rate Solvent Crystal 



We greatly appreciate Drs. Hiroyuki Shinto and Tomonori Fukasawa for their kindly support of DLS measurement and significant advices.


  1. 1.
    Fukasawa T, Deng ZY, Ando M, Ohji T, Kanzaki S (2002) J Am Ceram Soc 85(9):2151CrossRefGoogle Scholar
  2. 2.
    Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Chem Mater 17(3):683CrossRefGoogle Scholar
  3. 3.
    Zhang H, Cooper AI (2007) Adv Mater 19(11):1529CrossRefGoogle Scholar
  4. 4.
    Kim JW, Taki K, Nagamine S, Ohshima M (2008) Chem Eng Sci 63(15):3858CrossRefGoogle Scholar
  5. 5.
    Hua FJ, Park TG, Lee DS (2003) Polymer 44(6):1911CrossRefGoogle Scholar
  6. 6.
    Kim JW, Taki K, Nagamine S, Ohshima M (2009) Langmuir 25(9):5304CrossRefGoogle Scholar
  7. 7.
    Ma PX, Zhang RY (2001) J Biomed Mater Res 56(4):469CrossRefGoogle Scholar
  8. 8.
    Schoof H, Apel J, Heschel I, Rau G (2001) J Biomed Mater Res 58(4):352CrossRefGoogle Scholar
  9. 9.
    Ding SQ, Zeng YP, Jiang DL (2007) J Am Ceram Soc 90(7):2276CrossRefGoogle Scholar
  10. 10.
    Koch D, Andresen L, Schmedders T, Grathwohl G (2003) J Sol-Gel Sci Technol 26(1–3):149CrossRefGoogle Scholar
  11. 11.
    Mukai SR, Nishihara H, Shichi S, Tamon H (2004) Chem Mater 16(24):4987CrossRefGoogle Scholar
  12. 12.
    Mukai SR, Nishihara H, Tamon H (2004) Chem Commun (7):874–875Google Scholar
  13. 13.
    Nishihara H, Mukai SR, Tamon H (2004) Carbon 42(4):899CrossRefGoogle Scholar
  14. 14.
    Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Science 311(5760):515CrossRefGoogle Scholar
  15. 15.
    Deville S, Saiz E, Tomsia AP (2006) Biomaterials 27(32):5480CrossRefGoogle Scholar
  16. 16.
    Araki K, Halloran JW (2004) J Am Ceram Soc 87(11):2014CrossRefGoogle Scholar
  17. 17.
    Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) J Am Ceram Soc 84(1):230CrossRefGoogle Scholar
  18. 18.
    Fukasawa T, Deng ZY, Ando M, Ohji T, Goto Y (2001) J Mater Sci 36(10):2523. doi: 10.1023/A:1017946518955 CrossRefGoogle Scholar
  19. 19.
    Koh YH, Song JH, Lee EJ, Kim HE (2006) J Am Ceram Soc 89(10):3089CrossRefGoogle Scholar
  20. 20.
    Moon JW, Hwang HJ, Awano M, Maeda K, Kanzaki S (2002) J Ceram Soc Jpn 110(5):479CrossRefGoogle Scholar
  21. 21.
    Mukai SR, Nishihara H, Tamon H (2008) Microporous Mesoporous Mater 116(1–3):166CrossRefGoogle Scholar
  22. 22.
    Gutierrez MC, Garcia-Carvajal ZY, Hortiguela MJ, Yuste L, Rojo F, Ferrer ML, del Monte F (2007) J Mater Chem 17(29):2992CrossRefGoogle Scholar
  23. 23.
    Chino Y, Dunand DC (2008) Acta Mater 56(1):105CrossRefGoogle Scholar
  24. 24.
    Waschkies T, Oberacker R, Hoffmann MJ (2009) J Am Ceram Soc 92(1):S79CrossRefGoogle Scholar
  25. 25.
    Kim JW, Tazumi K, Okaji R, Ohshima M (2009) Chem Mater 21(15):3476CrossRefGoogle Scholar
  26. 26.
    Kim JK, Taki K, Ohshima M (2007) Langmuir 23:12397CrossRefGoogle Scholar
  27. 27.
    Cui L, Han Y (2005) Langmuir 21(24):11085CrossRefGoogle Scholar
  28. 28.
    Hansen CM (1999) Hansen solubility parameters: a user’s handbook. CRC Press Inc., Boca RatonCrossRefGoogle Scholar
  29. 29.
    Mortensen K, Brown W, Almdal K, Alami E, Jada A (1997) Langmuir 13:3635CrossRefGoogle Scholar
  30. 30.
    Kanao M, Matsuda Y, Sato T (2003) Macromolecules 36:2093CrossRefGoogle Scholar
  31. 31.
    Cheng G, Melnichenko YB, Wignall GD, Hua F, Hong K, Mays JW (2007) Polymer 48:4108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rika Okaji
    • 1
  • Shota Sakashita
    • 1
  • Kohei Tazumi
    • 1
  • Kentaro Taki
    • 1
  • Shinsuke Nagamine
    • 1
  • Masahiro Ohshima
    • 1
  1. 1.Department of Chemical EngineeringKyoto UniversityKyotoJapan

Personalised recommendations