Journal of Materials Science

, Volume 48, Issue 13, pp 4773–4779 | Cite as

Using ball indentation to determine the mechanical properties of an Al-7475 alloy processed by high-pressure torsion

  • Deepak C. Patil
  • S. A. Kori
  • K. Venkateswarlu
  • Gautam Das
  • Saleh N. Alhajeri
  • Terence G. Langdon
Nanostructured Materials


A commercial Al-7475 alloy with an initial grain size of ~40 μm was processed by high-pressure torsion (HPT) for up to 2 turns at room temperature under a pressure of 6.0 GPa. The mechanical properties of the processed materials were evaluated by the ball-indentation technique to give information on the yield strength and the ultimate tensile strength. Following HPT, microhardness measurements revealed a steady increase in the hardness values from the centers of the samples towards the edges. After 2 turns, the ultimate tensile strength was ~1050 MPa at the edge of the disk and the measured grain size was ~70 nm. The results demonstrate the potential for using HPT to achieve excellent grain refinement in the Al-7475 alloy.


Ultimate Tensile Strength Severe Plastic Deformation Equal Channel Angular Pressing Select Area Electron Diffraction Pattern Severe Plastic Deformation Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.


  1. 1.
    Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mater 51:825CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33CrossRefGoogle Scholar
  3. 3.
    Zhu YT, Valiev RZ, Langdon TG, Tsuji N, Lu K (2010) MRS Bull 35:977CrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  5. 5.
    Pandey SC, Joseph MA, Pradeep MS, Raghavendra K, Ranganath VR, Venkateswarlu K, Langdon TG (2012) Mater Sci Eng 534:282CrossRefGoogle Scholar
  6. 6.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  7. 7.
    Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575CrossRefGoogle Scholar
  8. 8.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  9. 9.
    Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A381:377Google Scholar
  10. 10.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  11. 11.
    Valiev R (2004) Nat Mater 3:511CrossRefGoogle Scholar
  12. 12.
    Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387CrossRefGoogle Scholar
  13. 13.
    Wu X, Zhu YT, Chen MW, Ma E (2006) Scripta Mater 54:1685CrossRefGoogle Scholar
  14. 14.
    Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li S (2006) Acta Mater 54:655CrossRefGoogle Scholar
  15. 15.
    Asaro RJ, Suresh S (2005) Acta Mater 53:3369CrossRefGoogle Scholar
  16. 16.
    Wang YM, Hodge AM, Biener J, Hamza AV, Barnes DE, Liu K (2005) Appl Phys Lett 86:101915CrossRefGoogle Scholar
  17. 17.
    Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Int J Mater Res 100:1653CrossRefGoogle Scholar
  18. 18.
    Edalati K, Horita Z (2010) J Mater Sci 45:4578. doi: 10.1007/s10853-010-4381-z CrossRefGoogle Scholar
  19. 19.
    Koch CC (2003) Scripta Mater 49:657CrossRefGoogle Scholar
  20. 20.
    Zhu YT, Langdon TG (2004) JOM 56(10):58CrossRefGoogle Scholar
  21. 21.
    Venkateswarlu K, Das G, Pramanik AK, Xu C, Langdon TG (2006) Mater Sci Eng A427:188Google Scholar
  22. 22.
    Rajinikanth V, Venkateswarlu K, Sen MK, Das M, Alhajeri SN, Langdon TG (2011) Mater Sci Eng A528:1702Google Scholar
  23. 23.
    Venkateswarlu K, Rajinikanth V, Sen MK, Alhajeri SN, Langdon TG (2011) Mater Sci Forum 667–669:743Google Scholar
  24. 24.
    Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198Google Scholar
  25. 25.
    Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190CrossRefGoogle Scholar
  26. 26.
    Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341Google Scholar
  27. 27.
    Mathew MD, Murty KL, Rao KBS, Mannan SL (1999) Mater Sci Eng A264:159Google Scholar
  28. 28.
    Murty KL, Miraglia PQ, Mathew MD, Shah VN, Haggag FM (1999) Int J Press Vessels Pip 76:361CrossRefGoogle Scholar
  29. 29.
    Das G, Ghosh S, Sahay SK, Ranganath VR, Vaze KK (2004) Z Metallk 95:1120Google Scholar
  30. 30.
    Ghosh S, Sahay SK, Das G (2004) Trans Indian Inst Metals 57:51Google Scholar
  31. 31.
    Das G, Ghosh S, Sahay SK (2005) Mater Lett 59:2246CrossRefGoogle Scholar
  32. 32.
    Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi: 10.1007/s10853-008-2624-z CrossRefGoogle Scholar
  33. 33.
    Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705CrossRefGoogle Scholar
  34. 34.
    Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387-389:809Google Scholar
  35. 35.
    Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK, Valiev RZ, Ma Y, Langdon TG (1993) J Mater Res 8:2810CrossRefGoogle Scholar
  36. 36.
    Wang J, Iwahashi Y, Horita Z, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:2973CrossRefGoogle Scholar
  37. 37.
    Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:4619CrossRefGoogle Scholar
  38. 38.
    Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:1880CrossRefGoogle Scholar
  39. 39.
    Furukawa M, Iwahashi Y, Horita M, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1997) Acta Mater 45:4751CrossRefGoogle Scholar
  40. 40.
    Horita Z, Smith DJ, Nemoto M, Valiev RZ, Langdon TG (1998) J Mater Res 13:446CrossRefGoogle Scholar
  41. 41.
    Vorhauer A, Pippan R (2004) Scripta Mater 51:921CrossRefGoogle Scholar
  42. 42.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  43. 43.
    Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168CrossRefGoogle Scholar
  44. 44.
    Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:168Google Scholar
  45. 45.
    Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Mater Sci Eng A527:4864Google Scholar
  46. 46.
    Duan ZC, Liao XZ, Kawasaki M, Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4621. doi: 10.1007/s10853-010-4400-0 CrossRefGoogle Scholar
  47. 47.
    Edalati K, Horita Z (2010) Mater Trans 51:1051CrossRefGoogle Scholar
  48. 48.
    Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308CrossRefGoogle Scholar
  49. 49.
    Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A528:7715Google Scholar
  50. 50.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186CrossRefGoogle Scholar
  51. 51.
    Sabbaghianrad S, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7789. doi: 10.1007/s10853-012-6524-x CrossRefGoogle Scholar
  52. 52.
    Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7782. doi: 10.1007/s10853-012-6587-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Deepak C. Patil
    • 1
  • S. A. Kori
    • 1
  • K. Venkateswarlu
    • 2
  • Gautam Das
    • 3
  • Saleh N. Alhajeri
    • 4
    • 5
  • Terence G. Langdon
    • 4
    • 6
  1. 1.Visvesvaraya Technological UniversityBelgaumIndia
  2. 2.CSIR—National Aerospace LaboratoriesBangaloreIndia
  3. 3.CSIR—National Metallurgical LaboratoryJamshedpurIndia
  4. 4.Materials Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  5. 5.Department of Manufacturing EngineeringCollege of Technological Studies, PAAETShuwaikhKuwait
  6. 6.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations