Journal of Materials Science

, Volume 48, Issue 5, pp 1997–2001 | Cite as

Effect of Y-doping on the transport and magnetic properties of La0.5Sr0.5CoO3 and La0.7Sr0.3CoO3

  • G. D. Dwivedi
  • K. K. Shukla
  • P. Shahi
  • A. K. Ghosh
  • A. K. Nigam
  • Sandip Chatterjee


The temperature variation of magnetization, resistivity, and thermoelectric power of undoped and Y-doped La0.7Sr0.3CoO3 and La0.5Sr0.5CoO3 samples have been investigated. Y-doping decreases the magnetization possibly due to the spin-state transition of Co ions. The low temperature conduction in (La1−y Y y )0.7Sr0.3CoO3 is consistent with the variable range hopping. With Y-doping, value of the Seebeck coefficient increases as Y-doping decreases bandwidth and increases distortion. Seebeck coefficient value also reflects that the orbital stability increases with Sr concentration.


Manganite Thermoelectric Power Orbital Stability LaCoO3 CoO3 Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SC is thankful to the funding agencies DST (Grant No.: SR/S2/CMP-26/2008) and CSIR (Grant No.: 03(1142)/09/EMR-II) for financial support. Authors are also grateful to D. Budhakit for his help in magnetization measurement.


  1. 1.
    Imada M, Fujimori A, Tokura Y (1998) Rev Mod Phys 70:1039CrossRefGoogle Scholar
  2. 2.
    Zaanen J, Sawatzky GA, Allen JW (1985) Phys Rev Lett 55:418CrossRefGoogle Scholar
  3. 3.
    Bell LE (2008) Science 321:1457CrossRefGoogle Scholar
  4. 4.
    Snyder GJ, Toberer ES (2008) Nat Mater 7:105CrossRefGoogle Scholar
  5. 5.
    Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685CrossRefGoogle Scholar
  6. 6.
    Ohta H, Sugiura K, Koumoto K (2008) Inorg Chem 47:8429CrossRefGoogle Scholar
  7. 7.
    Androulakis J, Migiakis P, Giapintzakis J (2004) Appl Phys Lett 84:1099CrossRefGoogle Scholar
  8. 8.
    Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Phys Rev B 62:166CrossRefGoogle Scholar
  9. 9.
    Flahaut D, Mihara T, Funahashi R, Nabeshima N, Lee K, Ohta H, Koumoto K (2006) J Appl Phys 100:084911CrossRefGoogle Scholar
  10. 10.
    Bocher L, Aguirre MH, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A (2008) Inorg Chem 47:8077CrossRefGoogle Scholar
  11. 11.
    Wu J, Leighton C (2003) Phys Rev B 67:174408CrossRefGoogle Scholar
  12. 12.
    Nam DNH, Jonason K, Nordblad P, Khiem NV, Phuc NX (1999) Phys Rev B 59:4189CrossRefGoogle Scholar
  13. 13.
    Samal D, Anil Kumar PS (2011) J Phys Condens Matter 23:016001CrossRefGoogle Scholar
  14. 14.
    Ben-Amor A, Koubaa M, Cheikhrouhou-Koubaa W, Cheikhrouhou A (2009) J Alloys Compd 467:78CrossRefGoogle Scholar
  15. 15.
    Mott NF (1968) J Non-Cryst Solids 1:1CrossRefGoogle Scholar
  16. 16.
    Singh DJ (2000) Phys Rev B 61:13397CrossRefGoogle Scholar
  17. 17.
    Wang Y, Sui Y, Ren P, Wang L, Wang X, Su W, Fan HJ (2010) Inorg Chem 49:3216CrossRefGoogle Scholar
  18. 18.
    Cutler M, Mott NF (1969) Phys Rev 181:1336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • G. D. Dwivedi
    • 1
  • K. K. Shukla
    • 2
  • P. Shahi
    • 2
  • A. K. Ghosh
    • 1
  • A. K. Nigam
    • 3
  • Sandip Chatterjee
    • 2
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Applied PhysicsIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Department of CMP and MSTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations