Advertisement

Journal of Materials Science

, Volume 48, Issue 4, pp 1837–1842 | Cite as

Transition from ferro- to ferrimagnetic ordering via Mn-disorder in (Ni,Co)MnGa quaternary Heusler alloy

  • Mukhtiyar Singh
  • Hardev S. Saini
  • Manish K. Kashyap
Article

Abstract

An inclusive investigation of electronic and magnetic properties of ordered and disordered (Ni,Co)MnGa quaternary Heusler alloy has been undertaken using the density functional theory-based full potential linearized augmented plane wave method within generalized gradient approximation as exchange–correlation potentials. We observe that the increasing Mn concentration in Ni1−x CoMn1+x Ga (x = 0, 0.25, 0.50 and 0.75) lowers the ferromagnetic (FM) character of the parent (Ni,Co)MnGa alloy. This change creates two inequivalent Mn sites aligning antiparallel to each other and generates the ferrimagnetic (FiM) ordering in all resultant disordered alloys. Further, this replacement sets off a structural change from Y- to Xa-structure. The highest magnetic moment has been found to be 4.95 μB for ordered (Ni,Co)MnGa alloy, whereas it decreases with increase in Mn-concentration for disordered systems. The variation of half-metallicity with increasing Mn concentration is analysed. The stability of FM and FiM state for the present ordered and disordered alloys, respectively, is also examined.

Keywords

Spin Polarization Total Magnetic Moment Transition Metal Atom Spin Channel Atomic Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The computation in this study was performed on the Kalki server at the Inter University Accelerator Centre (IUAC), New Delhi, India. The authors, M. K. Kashyap and M. Singh, gratefully acknowledge the support from the University Grant Commission (UGC), New Delhi, INDIA for providing the research facilities under the scheme SAP-I for faculty members and financial assistance through the SRF (RGNFS), respectively.

References

  1. 1.
    Heusler F (1903) Verh Dtsch Phys Ges 5:219Google Scholar
  2. 2.
    Sakuraba Y, Takanashi K, Kota Y, Kubota T, Oogane M, Sakuma A, Ando Y (2010) Phys Rev B 81:144422CrossRefGoogle Scholar
  3. 3.
    Özdoğan K, Şaşıoğlu E, Galanakis I (2009) J Phys D Appl Phys 42:085003CrossRefGoogle Scholar
  4. 4.
    Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tezuka N, Wojcik M, Jedryka E (2006) J Phys D Appl Phys 39:816CrossRefGoogle Scholar
  5. 5.
    Hamad B, Khalifeh J, Hu Q-M (2012) J Mater Sci 47:797. doi: 10.1007/s10853-011-5857-1 CrossRefGoogle Scholar
  6. 6.
    Hamad B, Charifi Z, Baaziz H, Soyalp F (2012) J Magn and Mag Mater 324:3345CrossRefGoogle Scholar
  7. 7.
    Qawasmeh Y, Hamad B (2012) J Appl Phys 111:033905CrossRefGoogle Scholar
  8. 8.
    Alijani V, Winterlik J, Fecher GH, Naghavi SS, Felser C (2011) Phys Rev B 83:184428CrossRefGoogle Scholar
  9. 9.
    Schmidt G, Ferrand D, Molenkamp LW, Filip AT, van Wees BJ (2000) Phys Rev B 62:R4790CrossRefGoogle Scholar
  10. 10.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024CrossRefGoogle Scholar
  11. 11.
    Galanakis I, Dederichs PH, Papanikolaou N (2002) Phys Rev B 66:134428CrossRefGoogle Scholar
  12. 12.
    Galanakis I, Dederichs PH (2002) Phys Rev B 66:174429CrossRefGoogle Scholar
  13. 13.
    Kumar M, Nautiyal T, Auluck S (2009) J Phys: Condens Matter 21:196003CrossRefGoogle Scholar
  14. 14.
    Singh M, Saini HS, Kumar S, Kashyap MK (2012) Comput Mater Sci 53:431CrossRefGoogle Scholar
  15. 15.
    Dinh VA, Sato K, Yoshida HK (2008) J Phys Soc Jpn 77:014705CrossRefGoogle Scholar
  16. 16.
    Mori H, Odahara Y, Shigyo D, Yoshitake T, Miyoshi E (2012) Thin Solid Films 520:4979CrossRefGoogle Scholar
  17. 17.
    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88:192508CrossRefGoogle Scholar
  18. 18.
    Holmes SN, Pepper M (2002) Appl Phys Lett 81:1651CrossRefGoogle Scholar
  19. 19.
    Kirillova MN, Makhnev AA, Shreder EI, Dyakina VP, Gorina NB (1995) Phys Status Solidi B 187:231CrossRefGoogle Scholar
  20. 20.
    Hanssen KEHM, Mijnarends PE (1990) Phys Rev B 34:5009CrossRefGoogle Scholar
  21. 21.
    Hanssen KEHM, Mijnarends PE, Rabou LPLM, Buschow KHJ (1990) Phys Rev B 42:1533CrossRefGoogle Scholar
  22. 22.
    van Leuken H, de Groot RA (1995) Phys Rev Lett 74:1171CrossRefGoogle Scholar
  23. 23.
    Coey JMD, Venkatesan M (2002) J Appl Phys 91:8345CrossRefGoogle Scholar
  24. 24.
    Park J-H, Vescovo E, Kim H-J, Kwon C, Ramesh R, Venkatesan T (1998) Nature 392:794CrossRefGoogle Scholar
  25. 25.
    Meinert M, Schmalhorst J-M, Klewe C, Reiss G, Arenholz E, Böhnert T, Nielsch K (2011) Phys Rev B 84:132405CrossRefGoogle Scholar
  26. 26.
    Liu GD, Dai XF, Liu HY, Chen JL, Li YX, Xiao G, Wu GH (2008) Phys Rev B 77:014424CrossRefGoogle Scholar
  27. 27.
    Galanakis I, Ozdogan K, Aktas B, Sasioglu E (2006) Appl Phys Lett 89:042502CrossRefGoogle Scholar
  28. 28.
    Weinert M, Wimmer E, Freeman AJ (1982) Phys Rev B 26:4571CrossRefGoogle Scholar
  29. 29.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, Technical Universität Wien, ISBN 3-9501031-1-2Google Scholar
  30. 30.
    Perdew P, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  31. 31.
    Rath J, Freeman AJ (1975) Phys Rev B 11:2109CrossRefGoogle Scholar
  32. 32.
    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G (2003) J Phys: Condens Matter 15:7891CrossRefGoogle Scholar
  33. 33.
    Williams AR, Zeller R, Moruzzi VL, Gellat CD, Kubler J (1981) J Appl Phys 52:2067CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mukhtiyar Singh
    • 1
  • Hardev S. Saini
    • 1
  • Manish K. Kashyap
    • 1
  1. 1.Department of PhysicsKurukshetra UniversityKurukshetraIndia

Personalised recommendations