Advertisement

Journal of Materials Science

, Volume 48, Issue 4, pp 1755–1762 | Cite as

Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching

  • Kong Liu
  • Shengchun Qu
  • Xinhui Zhang
  • Zhanguo Wang
Article

Abstract

Low-cost fabrication methods enabling the morphological control of silicon nanowires are of great importance in many device application fields. A top-down fabrication method, metal-assisted chemical etching, is proved to be a feasible solution. In this paper, some novel approaches based on metal-assisted chemical etching, alkaline solution etching, and electrochemical anodic etching are presented for fabricating micro- and nano-structures, which reveal the anisotropic characteristics of metal-assisted chemical etching in silicon. A new model is proposed to explain the motility behavior of Ag particles in metal-assisted chemical etching of silicon. It is shown that Ag particle forms a self-electrophoresis unit and migrates into Si substrate along [100] direction independently. Diameter and length control of silicon nanowires are achieved by varying Ag deposition and etching durations of metal-assisted chemical etching, respectively, which provide a facilitation to achieve high-aspect-ratio silicon nanowires at room temperature in a short period. These results show a potential simple method to microstructure silicon for devices application, such as solar cells and sensors.

Keywords

Silicon Wafer Porous Silicon Silicon Nanowires SiNW Array Deposition Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was mostly supported by the National Basic Research Program of China (Grant No. 2012CB934200), and National Natural Science Foundation of China (Contract Nos. 50990064, 61076009, 61204002).

References

  1. 1.
    Zubel I (1998) Sens Actuator A Phys 70:260CrossRefGoogle Scholar
  2. 2.
    Schuster R, Kirchner V, Allongue P, Ertl G (2000) Science 289:98CrossRefGoogle Scholar
  3. 3.
    Chadwick EG, Clarkin OM, Tanner DA (2010) J Mater Sci 45:6562. doi: 10.1007/s10853-010-4745-4 CrossRefGoogle Scholar
  4. 4.
    Chadwick EG, Beloshapkin S, Tanner DA (2012) J Mater Sci 47:2396. doi: 10.1007/s10853-011-6060-0 CrossRefGoogle Scholar
  5. 5.
    Baker-Finch SC, McIntosh KR (2012) Prog Photovolt 20:51. doi: 10.1002/pip.1109 CrossRefGoogle Scholar
  6. 6.
    TK Chong, J Wilson, S Mokkapati, KR Catchpole (2012) J Opt 14. doi: 10.1088/2040-8978/14/2/024012
  7. 7.
    Wu Y, Zhang G, Xi Z (2011) Mater Sci Semicond Process 14:302. doi: 10.1016/j.mssp.2011.02.008 CrossRefGoogle Scholar
  8. 8.
    Yan L, Minghui H (2012) J Mater Sci 47:1594. doi: 10.1007/s10853-011-6157-5 CrossRefGoogle Scholar
  9. 9.
    Li SQ, Wijesinghe T, Blackwood DJ (2008) Adv Mater 20:3165. doi: 10.1002/adma.200800090 CrossRefGoogle Scholar
  10. 10.
    LL Ma, YC Zhou, N Jiang, et al. (2006) Appl Phys Lett 88. doi: 10.1063/1.2199593
  11. 11.
    Qu Y, Liao L, Li Y, Zhang H, Huang Y, Duan X (2009) Nano Lett 9:4539. doi: 10.1021/nl903030h CrossRefGoogle Scholar
  12. 12.
    Garnett EC, Liang WJ, Yang PD (2007) Adv Mater 19:2946. doi: 10.1002/adma.200700288 CrossRefGoogle Scholar
  13. 13.
    Lv M, Su S, He Y et al (2010) Adv Mater 22:5463. doi: 10.1002/adma.201001934 CrossRefGoogle Scholar
  14. 14.
    Chen CY, Wu CS, Chou CJ, Yen TJ (2008) Adv Mater 20:3811. doi: 10.1002/adma.200702788 CrossRefGoogle Scholar
  15. 15.
    Huang ZP, Fang H, Zhu J (2007) Adv Mater 19:744. doi: 10.1002/adma.200600892 CrossRefGoogle Scholar
  16. 16.
    Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Adv Mater 21:2681. doi: 10.1002/adma.200803754 CrossRefGoogle Scholar
  17. 17.
    Huang ZP, Geyer N, Werner P, de Boor J, Gosele U (2011) Adv Mater 23:285. doi: 10.1002/adma.201001784 CrossRefGoogle Scholar
  18. 18.
    B Ozdemir, M Kulakci, R Turan, HE Unalan (2011) Nanotechnology 22. doi: 10.1088/0957-4484/22/15/155606
  19. 19.
    Peng K, Yan Y, Gao S, Zhu J (2003) Adv Funct Mater 13:127. doi: 10.1002/adfm.200390018 CrossRefGoogle Scholar
  20. 20.
    Tsujino K, Matsumura M (2005) Adv Mater 17:1045. doi: 10.1002/adma.200401681 CrossRefGoogle Scholar
  21. 21.
    Fang H, Wu Y, Zhao JH, Zhu J (2006) Nanotechnology 17:3768. doi: 10.1088/0957-4484/17/15/026 CrossRefGoogle Scholar
  22. 22.
    Hui F, Xudong L, Shuang S, Ying X, Jing Z (2008) Nanotechnology 19:255703CrossRefGoogle Scholar
  23. 23.
    Peng K, Xu Y, Wu Y, Yan Y, Lee S-T, Zhu J (2005) Small 1:1062. doi: 10.1002/smll.200500137 CrossRefGoogle Scholar
  24. 24.
    Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J (2005) Angew Chem Int Ed 44:2737. doi: 10.1002/anie.200462995 CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Li DS, Sang WB, Yang D, Jiang MH (2007) J Mater Sci 42:8496. doi: 10.1007/s10853-007-1749-9 CrossRefGoogle Scholar
  26. 26.
    Kovacs GTA, Maluf NI, Petersen KE (1998) Proc IEEE 86:1536CrossRefGoogle Scholar
  27. 27.
    Weiss D, Gebensleben T, Diestel L, Alphei L, Becker V, Becker JA (2011) J Mater Sci 46:3436. doi: 10.1007/s10853-010-5246-1 CrossRefGoogle Scholar
  28. 28.
    Peng K, Lu A, Zhang R, Lee S-T (2008) Adv Funct Mater 18:3026. doi: 10.1002/adfm.200800371 CrossRefGoogle Scholar
  29. 29.
    Celler GK, Barr DL, Rosamilia JM (2000) Electrochem Solid State Lett 3:47CrossRefGoogle Scholar
  30. 30.
    Zubel I, Barycka I (1998) Sens Actuator A Phys 70:250CrossRefGoogle Scholar
  31. 31.
    Foll H, Christophersen M, Carstensen J, Hasse G (2002) Mater Sci Eng R Rep 39:93CrossRefGoogle Scholar
  32. 32.
    Zubel I (2000) Sens Actuator A Phys 84:116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Kong Liu
    • 1
  • Shengchun Qu
    • 1
  • Xinhui Zhang
    • 2
  • Zhanguo Wang
    • 1
  1. 1.Key Laboratory of Semiconductor Materials ScienceInstitute of Semiconductor, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Superlattices and MicrostructuresInstitute of Semiconductor, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations