Skip to main content
Log in

Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-cost fabrication methods enabling the morphological control of silicon nanowires are of great importance in many device application fields. A top-down fabrication method, metal-assisted chemical etching, is proved to be a feasible solution. In this paper, some novel approaches based on metal-assisted chemical etching, alkaline solution etching, and electrochemical anodic etching are presented for fabricating micro- and nano-structures, which reveal the anisotropic characteristics of metal-assisted chemical etching in silicon. A new model is proposed to explain the motility behavior of Ag particles in metal-assisted chemical etching of silicon. It is shown that Ag particle forms a self-electrophoresis unit and migrates into Si substrate along [100] direction independently. Diameter and length control of silicon nanowires are achieved by varying Ag deposition and etching durations of metal-assisted chemical etching, respectively, which provide a facilitation to achieve high-aspect-ratio silicon nanowires at room temperature in a short period. These results show a potential simple method to microstructure silicon for devices application, such as solar cells and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zubel I (1998) Sens Actuator A Phys 70:260

    Article  Google Scholar 

  2. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Science 289:98

    Article  CAS  Google Scholar 

  3. Chadwick EG, Clarkin OM, Tanner DA (2010) J Mater Sci 45:6562. doi:10.1007/s10853-010-4745-4

    Article  CAS  Google Scholar 

  4. Chadwick EG, Beloshapkin S, Tanner DA (2012) J Mater Sci 47:2396. doi:10.1007/s10853-011-6060-0

    Article  CAS  Google Scholar 

  5. Baker-Finch SC, McIntosh KR (2012) Prog Photovolt 20:51. doi:10.1002/pip.1109

    Article  CAS  Google Scholar 

  6. TK Chong, J Wilson, S Mokkapati, KR Catchpole (2012) J Opt 14. doi:10.1088/2040-8978/14/2/024012

  7. Wu Y, Zhang G, Xi Z (2011) Mater Sci Semicond Process 14:302. doi:10.1016/j.mssp.2011.02.008

    Article  CAS  Google Scholar 

  8. Yan L, Minghui H (2012) J Mater Sci 47:1594. doi:10.1007/s10853-011-6157-5

    Article  Google Scholar 

  9. Li SQ, Wijesinghe T, Blackwood DJ (2008) Adv Mater 20:3165. doi:10.1002/adma.200800090

    Article  CAS  Google Scholar 

  10. LL Ma, YC Zhou, N Jiang, et al. (2006) Appl Phys Lett 88. doi:10.1063/1.2199593

  11. Qu Y, Liao L, Li Y, Zhang H, Huang Y, Duan X (2009) Nano Lett 9:4539. doi:10.1021/nl903030h

    Article  CAS  Google Scholar 

  12. Garnett EC, Liang WJ, Yang PD (2007) Adv Mater 19:2946. doi:10.1002/adma.200700288

    Article  CAS  Google Scholar 

  13. Lv M, Su S, He Y et al (2010) Adv Mater 22:5463. doi:10.1002/adma.201001934

    Article  CAS  Google Scholar 

  14. Chen CY, Wu CS, Chou CJ, Yen TJ (2008) Adv Mater 20:3811. doi:10.1002/adma.200702788

    Article  CAS  Google Scholar 

  15. Huang ZP, Fang H, Zhu J (2007) Adv Mater 19:744. doi:10.1002/adma.200600892

    Article  CAS  Google Scholar 

  16. Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Adv Mater 21:2681. doi:10.1002/adma.200803754

    Article  CAS  Google Scholar 

  17. Huang ZP, Geyer N, Werner P, de Boor J, Gosele U (2011) Adv Mater 23:285. doi:10.1002/adma.201001784

    Article  CAS  Google Scholar 

  18. B Ozdemir, M Kulakci, R Turan, HE Unalan (2011) Nanotechnology 22. doi:10.1088/0957-4484/22/15/155606

  19. Peng K, Yan Y, Gao S, Zhu J (2003) Adv Funct Mater 13:127. doi:10.1002/adfm.200390018

    Article  CAS  Google Scholar 

  20. Tsujino K, Matsumura M (2005) Adv Mater 17:1045. doi:10.1002/adma.200401681

    Article  CAS  Google Scholar 

  21. Fang H, Wu Y, Zhao JH, Zhu J (2006) Nanotechnology 17:3768. doi:10.1088/0957-4484/17/15/026

    Article  CAS  Google Scholar 

  22. Hui F, Xudong L, Shuang S, Ying X, Jing Z (2008) Nanotechnology 19:255703

    Article  Google Scholar 

  23. Peng K, Xu Y, Wu Y, Yan Y, Lee S-T, Zhu J (2005) Small 1:1062. doi:10.1002/smll.200500137

    Article  CAS  Google Scholar 

  24. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J (2005) Angew Chem Int Ed 44:2737. doi:10.1002/anie.200462995

    Article  CAS  Google Scholar 

  25. Zhao Y, Li DS, Sang WB, Yang D, Jiang MH (2007) J Mater Sci 42:8496. doi:10.1007/s10853-007-1749-9

    Article  CAS  Google Scholar 

  26. Kovacs GTA, Maluf NI, Petersen KE (1998) Proc IEEE 86:1536

    Article  CAS  Google Scholar 

  27. Weiss D, Gebensleben T, Diestel L, Alphei L, Becker V, Becker JA (2011) J Mater Sci 46:3436. doi:10.1007/s10853-010-5246-1

    Article  CAS  Google Scholar 

  28. Peng K, Lu A, Zhang R, Lee S-T (2008) Adv Funct Mater 18:3026. doi:10.1002/adfm.200800371

    Article  CAS  Google Scholar 

  29. Celler GK, Barr DL, Rosamilia JM (2000) Electrochem Solid State Lett 3:47

    Article  CAS  Google Scholar 

  30. Zubel I, Barycka I (1998) Sens Actuator A Phys 70:250

    Article  Google Scholar 

  31. Foll H, Christophersen M, Carstensen J, Hasse G (2002) Mater Sci Eng R Rep 39:93

    Article  Google Scholar 

  32. Zubel I (2000) Sens Actuator A Phys 84:116

    Article  Google Scholar 

Download references

Acknowledgements

This work was mostly supported by the National Basic Research Program of China (Grant No. 2012CB934200), and National Natural Science Foundation of China (Contract Nos. 50990064, 61076009, 61204002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengchun Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Qu, S., Zhang, X. et al. Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching. J Mater Sci 48, 1755–1762 (2013). https://doi.org/10.1007/s10853-012-6936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6936-7

Keywords

Navigation