Journal of Materials Science

, Volume 48, Issue 4, pp 1740–1745 | Cite as

Synthesis, size reduction, and delithiation of carbonate-free nanocrystalline lithium nickel oxide

  • Craig Dearden
  • Minghui Zhu
  • Beibei Wang
  • Ricardo H. R. Castro


Lithium-based oxide nanoparticles have recently shown significant advantages as cathode materials for lithium ion batteries, showing higher ion exchanging rates related to the high surface area. Among them, LiNiO2 has been considered an attractive candidate due to its relatively low cost, high discharge capacity, reversibility, and low toxicity. However, the synthesis of nanosized LiNiO2 typically favors the formation of Li2CO3 and NiO phases, which critically affect the performance of the cathode nanoparticles. In this work, we describe the synthesis of lithium nickel oxide nanoparticles using a modified polymeric precursor method. As the formation of NiO and Li2CO3 was unavoidable, high temperatures would be required to obtain a carbonate-free LiNiO2. In order to avoid large coarsening of the particles associated with those treatments, samples were treated at lower temperatures and cleaned from surface Li2CO3 contaminants using acidic washing. The procedure successfully removed the carbonate, and also resulted in crystallite size reduction (28.1–15.2 nm) and controlled delithiation, simulating the lithium deficient conditions during electrochemical lithium displacement.


Lithium Carbonate Phase Acid Etching Lithium Content Pechini Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation grant DMR Ceramics 1055504.


  1. 1.
    Balaya P (2008) Energy Environ Sci 1:645CrossRefGoogle Scholar
  2. 2.
    Seal S, Baraton MI (2004) MRS Bull 29:9CrossRefGoogle Scholar
  3. 3.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366CrossRefGoogle Scholar
  4. 4.
    Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Edit 47:2930CrossRefGoogle Scholar
  5. 5.
    Armstrong AR, Paterson AJ, Robertson AD, Bruce PG (2002) Chem Mater 14:710CrossRefGoogle Scholar
  6. 6.
    Nordlinder S, Nyholm L, Gustafsson T, Edstrom K (2006) Chem Mater 18:495CrossRefGoogle Scholar
  7. 7.
    Shaju KM, Kuthanapillil M, Jiao F, Debart A, Bruce PG (2007) Phys Chem Chem Phys 9:1837CrossRefGoogle Scholar
  8. 8.
    Zhou YK, Li HL (2002) J Mater Chem 12:681CrossRefGoogle Scholar
  9. 9.
    Tatsumi K, Sasano Y, Muto S, Yoshida T, Sasaki T, Horibuchi K, Takeuchi Y, Ukyo Y (2008) Phys Rev B 78:045108CrossRefGoogle Scholar
  10. 10.
    Pouillerie C, Croguennec L, Biensan P, Willmann P, Delmas C (2000) J Electrochem Soc 147:2061CrossRefGoogle Scholar
  11. 11.
    Wang MJ, Navrotsky A (2004) Solid State Ion 166:167CrossRefGoogle Scholar
  12. 12.
    Moses AW, Flores HGG, Kim JG, Langell MA (2007) Appl Surf Sci 253:4782CrossRefGoogle Scholar
  13. 13.
    Lin SP, Fung KZ, Hon YM, Hon MH (2002) Nippon Seram Kyo Gak 110:1038CrossRefGoogle Scholar
  14. 14.
    Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, Shul YG (2007) J Power Sources 171:922CrossRefGoogle Scholar
  15. 15.
    Lin SP, Fung KZ, Hon YM, Hon MH (2001) J Cryst Growth 226:148CrossRefGoogle Scholar
  16. 16.
    Pechini M (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same form a capacitor. US Patent 3,330,697Google Scholar
  17. 17.
    Wejrzanowski T, Pielaszek R, Opalinska A, Matysiak H, Lojkowski W, Kurzydlowski K (2006) Appl Surf Sci 253:204CrossRefGoogle Scholar
  18. 18.
    Arai H, Sakurai Y (1999) J Power Sources 81:401CrossRefGoogle Scholar
  19. 19.
    Venkatraman S, Choi J, Manthiram A (2004) Electrochem Commun 6:832CrossRefGoogle Scholar
  20. 20.
    Yin S-C, Rho Y-H, Swainson I, Nazar LF (2006) Chem Mater 18:1901CrossRefGoogle Scholar
  21. 21.
    Choi J, Manthiram A (2004) Electrochem Solid-State Lett 7:A365CrossRefGoogle Scholar
  22. 22.
    Yin, S-C, Rho, Y-H, Swainson, I, Nazar, LF (2005) Mater Res Soc Symp Proc 835:K11.10.1Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Craig Dearden
    • 1
  • Minghui Zhu
    • 1
  • Beibei Wang
    • 1
  • Ricardo H. R. Castro
    • 1
  1. 1.Department of Chemical Engineering and Materials Science & NEAT ORUUniversity of CaliforniaDavisUSA

Personalised recommendations