Advertisement

Journal of Materials Science

, Volume 48, Issue 4, pp 1702–1710 | Cite as

Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers

  • Cong-Ju Li
  • Bo-Neng Huang
  • Jiao-Na Wang
Article

Abstract

BaFe12−x Al x O19 nanofibers (x = 0–2.0) with average diameter 110 nm have been prepared via the electrospinning and subsequent heat treatment at 1100 °C for 2 h. Individual BaFe12O19 nanofibers were composed of numerous nanocrystallites stacking alternatively along the long axis of fiber and the single crystallites on each nanofibers had random orientations. With increasing Al3+ ions substitution contents from 0 to 2.0, the diameter and morphology of nanofibers were almost no change. However, the lattice parameters decreased due to Fe3+ ions substituted by smaller Al3+ ions and the average grain size calculated by the Scherrer’s equation reduced from 47 to 42 nm. The crystallites possessed a hexagonal plate-like shape at x = 0 while they became rod-like with various Al3+ ions substitution. The X-ray diffraction patterns show that single-phase barium hexaferrite was formed when Al3+ ions substitution contents were less than and equal to 1.0, while other impurity phases were detected when they were more than 1.0. The chemical analysis shows that the element Al was all incorporated into the lattice of BaFe12O19 and evenly distributed throughout the BaFe12−x Al x O19 nanofibers. The magnetic testing shows that the saturation magnetization (M s) decreased obviously from 63.92 to 29.70 A m2/kg, while coercivity (H c) increased significantly from 288.2 to 740.7 kA/m with increasing Al3+ ions substitution.

Keywords

Anisotropy Field SrFe12O19 Barium Ferrite Superexchange Interaction Barium Hexaferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was partly supported by the Natural Science Foundation of China (Grant Nos. 51073005, 21274006), the Beijing Natural Science Foundation (Grant Nos. 2112013, KZ201010012012), PHR (IHLB), the 973 Project (Grant No. 2010CB933501), Beijing Municipal Science and Technology Development Program (Grant No. Z111103066611004) and Textile Vision Science & Education fund.

References

  1. 1.
    Ghasemi A, Hossienpour A, Morisako A et al (2006) J Magn Magn Mater 302:429. doi: 10.1016/j.jmmm.2005.10.006 CrossRefGoogle Scholar
  2. 2.
    Mallick KK, Shepherd P, Green RJ (2007) J Euro Ceram Soc 27:2045. doi: 10.1016/j.jeurceramsoc.2006.05.098 CrossRefGoogle Scholar
  3. 3.
    Mu GH, Chen N, Pan XF et al (2008) Mater Lett 63:840. doi: 10.1016/j.matlet.2007.06.074 CrossRefGoogle Scholar
  4. 4.
    Kojima H (1982) In: Wohlfarth EP (ed) Ferromagnetic materials. North Holland, AmsterdamGoogle Scholar
  5. 5.
    Parkin Stuart SP, Hayashi M, Thomas L (2008) Science 320:190. doi: 10.1126/science.1145799 CrossRefGoogle Scholar
  6. 6.
    Žužek Rožman K, Pečko D, Šturm S et al (2012) Mater Chem Phys 133:218. doi: 10.1016/j.matchemphys.2012.01.013 CrossRefGoogle Scholar
  7. 7.
    Li YQ, Huang Y, Li Yan (2011) Appl Surf Sci 257:8974. doi: 10.1016/j.apsusc.2011.05.075 CrossRefGoogle Scholar
  8. 8.
    Pullar RC, Appleton SG, Bhattacharya AK (1998) J Magn Magn Mater 186:326. doi: 10.1016/S0304-8853(98)00107-3 CrossRefGoogle Scholar
  9. 9.
    Pullar RC, Bhattacharya AK (2006) J Magn Magn Mater 300:490. doi: 10.1016/j.jmmm.2005.06.001 CrossRefGoogle Scholar
  10. 10.
    Song FZ, Shen XQ, Liu MQ, Xiang J (2010) Solid State Sci 12:1603. doi: 10.1016/j.solidstatesciences.2010.07.007 CrossRefGoogle Scholar
  11. 11.
    Mou FZ, Guan JG, Sun ZG et al (2010) J Solid State Chem 183:736. doi: 10.1016/j.jssc.2010.01.016 CrossRefGoogle Scholar
  12. 12.
    Li CJ, Wang B, Wang JN (2012) J Magn Magn Mater 324:1305. doi: 10.1016/j.jmmm.2011.11.016 CrossRefGoogle Scholar
  13. 13.
    Zhang JL, Fu JC, Li FS et al (2012) ACS Nano 6:2273. doi: 10.1021/nn204342m CrossRefGoogle Scholar
  14. 14.
    Ounnunkad S (2006) Solid State Commun 138:472. doi: 10.1016/j.ssc.2006.03.020 CrossRefGoogle Scholar
  15. 15.
    Liu Y, Drew Michael GB, Wang JP et al (2010) J Magn Magn Mater 322:366. doi: 10.1016/j.jmmm.2009.09.062 CrossRefGoogle Scholar
  16. 16.
    Shirtcliffe NJ, Thompson S, O’Keefe ES et al (2007) Mater Res Bull 42:281. doi: 10.1016/j.materresbull.2006.06.001 CrossRefGoogle Scholar
  17. 17.
    Liu Y, Drew Michael GB, Liu Y et al (2010) J Magn Magn Mater 322:3342. doi: 10.1016/j.jmmm.2010.06.022 CrossRefGoogle Scholar
  18. 18.
    Atkinson R, Gerber R, Papakonstantinou P et al (1992) J Magn Magn Mater 104–107:1005. doi: 10.1016/0304-8853(92)90462-W CrossRefGoogle Scholar
  19. 19.
    Luo H, Rai BK, Mishra SR et al (2012) J Magn Magn Mater 324:2602. doi: 10.1016/j.jmmm.2012.02.106 CrossRefGoogle Scholar
  20. 20.
    Singhal S, Namgyal T, Singh J et al (2011) Ceram Int 37:1833. doi: 10.1016/j.ceramint.2011.02.001 CrossRefGoogle Scholar
  21. 21.
    Liu Y, Drew Michael GB, Liu Y (2011) J Magn Magn Mater 323:945. doi: 10.1016/j.jmmm.2010.11.075 CrossRefGoogle Scholar
  22. 22.
    Skomski R (2003) J Phys Condens Matter 15:R841. doi: 10.1088/0953-8984/15/20/202 CrossRefGoogle Scholar
  23. 23.
    Rezlescu L, Rezlescu E, Popa PD et al (1999) J Magn Magn Mater 193:288. doi: 10.1016/S0304-8853(98)00442-9 CrossRefGoogle Scholar
  24. 24.
    Mali A, Ataie A (2005) Scripta Mater 53:1065. doi: 10.1016/j.scriptamat.2005.06.037 CrossRefGoogle Scholar
  25. 25.
    Liu Y, Drew Michael GB, Liu Y et al (2010) J Magn Magn Mater 322:814. doi: 10.1016/j.jmmm.2009.11.009 CrossRefGoogle Scholar
  26. 26.
    Liu MQ, Shen XQ, Song FZ et al (2011) J Solid State Chem 184:871. doi: 10.1016/j.jssc.2011.02.010 CrossRefGoogle Scholar
  27. 27.
    Qiu JX, Zhang QG, Gu MY (2005) J Appl Phys 98:5. doi: 10.1063/1.2135412 CrossRefGoogle Scholar
  28. 28.
    Shanker R (1990) J Mater Sci 25:2465. doi: 10.1007/BF00638043 CrossRefGoogle Scholar
  29. 29.
    Kazin PE, Trusov LA, Zaitsev DD et al (2008) J Magn Magn Mater 320:1068. doi: 10.1016/j.jmmm.2007.10.020 CrossRefGoogle Scholar
  30. 30.
    Tsuzuki A, Kani K, Watari K et al (1992) J Mater Sci Lett 11:893. doi: 10.1007/bf00730499 CrossRefGoogle Scholar
  31. 31.
    Yue ZY, Zhong MJ, Ma HL et al (2008) J Shanghai Univ 12:216. doi: 10.1007/s11741-008-0306-1 CrossRefGoogle Scholar
  32. 32.
    Dhage Vinod N, Mane ML, Keche AP (2011) Phys B 406:789. doi: 10.1016/j.physb.2010.11.094 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.College of Material Science and EngineeringBeijing Institute of Fashion TechnologyBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Clothing Materials R&D and AssessmentBeijingPeople’s Republic of China

Personalised recommendations