Journal of Materials Science

, Volume 48, Issue 4, pp 1646–1659 | Cite as

Development of a numerical mesoscale material model for short fibre-reinforced ceramics matrix composites

  • A. Airoldi
  • L. Di Landro
  • M. Sirna
  • P. Iavarone
  • G. Sala


The article describes the development of a numerical material model of ceramic matrix composite (CMC) reinforced by bundles of thousands of short carbon fibres and produced by means of a liquid silicon infiltration process. The objective of the article is the development of a numerical mesoscale model that considers the material as a simple bi-phasic composite constituted by an isotropic matrix with differently sized inclusions. The distinctive material microstructure that complicates the development of such a model is presented and the issues represented by the generation of the finite element models and by the identification of the effective properties of the constituent phases are discussed. In the presented approach, models are generated by numerically simulating the packing of bundles and phases are identified by means of tests and numerical analyses, which are performed on long fibre-reinforced specimens and on specimens subjected to a thermal process for the elimination of carbon reinforcement. The approach is applied to find out the parameters of a homogenized orthotropic model for CMC plates. The obtained results show that the numerical packing simulations can generate models with a realistic distribution of size, shape and orientation of the bundles. The mesoscale model and the phase properties identified by the proposed numerical and experimental procedure are validated by considering the stiffness of standard CMC specimens obtained in three-point bending tests. According to the results, the developed methodologies can be considered as a promising approach for a reliable prediction of short fibre-reinforced CMC elastic properties.


Representative Volume Element Mesoscale Model Brake Disc Ceramic Matrix Composite Volumetric Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The presented activity has been carried out within a collaboration between BSCCB (Brembo SGL Carbon Ceramic Brakes) and DIA (Dipartimento di Ingegneria Aerospaziale del Politecnico di Milano). The financial support and experimental collaboration of BSCCB is gratefully acknowledged.


  1. 1.
    Christin F, Naslain R, Hagenmuller P, Choury JJ (1977) French patent, 77/26979, Sept 1977Google Scholar
  2. 2.
    Naslain R, Rossignol JY, Hagenmuller P, Christin F, Héraud L, Choury JJ (1981) Rev Chim Miner 18:544Google Scholar
  3. 3.
    Fitzer E, Hegen D, Strohmeier H (1980) Rev Int Hautes Temp Refract 17:23Google Scholar
  4. 4.
    Krenkel W, Naslain R, Schneider H (2001) High temperature ceramic matrix composites. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  5. 5.
    Bansall NP (2005) Handbook of ceramic composites. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Christin F (2002) Adv Eng Mater 4:903CrossRefGoogle Scholar
  7. 7.
    Van Roode M, Ferber MK, Richerson DW (2002) Ceramic gas turbine design and test experience: progress in ceramic gas turbine development, vols 1 and 2. ASME Press, New YorkGoogle Scholar
  8. 8.
    Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) J Nucl Mater 329–333(Part A):56Google Scholar
  9. 9.
    Raffray AR, Jones R, Aiello G, Billone M, Giancarli L, Golfier H, Hasegawa A, Katoh Y, Kohyama A, Nishio S, Riccardi B, Tillack MS (2001) Fusion Eng Des 55:55CrossRefGoogle Scholar
  10. 10.
    Naslain R (2005) Int J Appl Ceram Technol 2:75CrossRefGoogle Scholar
  11. 11.
    Krenkel W, Berndt F (2005) Mater Sci Eng A412:177Google Scholar
  12. 12.
    Naslain R (2004) Compos Sci Technol 64:155CrossRefGoogle Scholar
  13. 13.
    Jones R, Szweda A, Petrak D (1999) Composites Part A 30:569CrossRefGoogle Scholar
  14. 14.
    Krenkel W, Henke T (1999) Key Eng Mater 164–165:421CrossRefGoogle Scholar
  15. 15.
    Krenkel W (2001) In: 25th Annual international conference on advanced ceramics & composites, Cocoa Beach (Florida, USA), January 2001Google Scholar
  16. 16.
    Krenkel W, Renz R, Heidenreich B (2001) Ceramic materials and components for engines. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Krenkel W (2004) Int J Appl Ceram Technol 1:188CrossRefGoogle Scholar
  18. 18.
    Bohm HJ, Eckshlager A, Han W (2002) Comput Mater Sci 25:42CrossRefGoogle Scholar
  19. 19.
    Segurado J, Llorca J (2002) J Mech Phys Solids 50:2107CrossRefGoogle Scholar
  20. 20.
    Berger H, Kari S, Gabbert U, Ramos RR, Castillero JB, Díaz RG (2007) J Mech Mater Struct 2:1561CrossRefGoogle Scholar
  21. 21.
    Airoldi A, Di Landro L, Sirna M, Quintini S, Sala G (2009) In: Proceeding of XX AIDAA congress, Milano, Italy, June 29–July 3 2009Google Scholar
  22. 22.
    Chawla N, Chawla KK (2006) J Mater Sci 41:913. doi: 10.1007/s10853-006-6572-1 CrossRefGoogle Scholar
  23. 23.
    Rice RW (1999) J Mater Sci 34:2769. doi: 10.1023/A:1004606612294 CrossRefGoogle Scholar
  24. 24.
    Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis, London, p 144Google Scholar
  25. 25.
    Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites, 2nd edn. Wiley, New York, p 22Google Scholar
  26. 26.
    Richerson DW (1982) Modern ceramic engineering. Marcel Dekker, New York, p 72Google Scholar
  27. 27.
    Campbell FC Jr (2006) Manufacturing technology for aerospace structural materials. Elsevier, Amsterdam, p 468Google Scholar
  28. 28.
    Hinrichsen L, Feder J, Ossang T (1986) J Stat Phys. doi: 10.1007/BF01011908
  29. 29.
    Abaqus® (2004) Theory and user’s manuals. Hibbit, Karlsson & Sorensen. Pawtucket, USAGoogle Scholar
  30. 30.
    Toll S (1998) Pol Eng Sci 38:1337CrossRefGoogle Scholar
  31. 31.
    Advani SG, Tucker CL (1987) J Rheol 31(8):751CrossRefGoogle Scholar
  32. 32.
    Gitman IM, Gitman MB, Askes H (2006) Arch Appl Mech 75:79CrossRefGoogle Scholar
  33. 33.
    Gitman IM, Askes H, Sluys LJ (2007) Eng Fract Mech 74:2518CrossRefGoogle Scholar
  34. 34.
    Monetto I, Drugan WJ (2009) J Mech Phys Solids 57:1578CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A. Airoldi
    • 1
  • L. Di Landro
    • 1
  • M. Sirna
    • 2
  • P. Iavarone
    • 1
  • G. Sala
    • 1
  1. 1.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanItaly
  2. 2.Ichrome LtdBristolUK

Personalised recommendations