Skip to main content
Log in

Development of a numerical mesoscale material model for short fibre-reinforced ceramics matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The article describes the development of a numerical material model of ceramic matrix composite (CMC) reinforced by bundles of thousands of short carbon fibres and produced by means of a liquid silicon infiltration process. The objective of the article is the development of a numerical mesoscale model that considers the material as a simple bi-phasic composite constituted by an isotropic matrix with differently sized inclusions. The distinctive material microstructure that complicates the development of such a model is presented and the issues represented by the generation of the finite element models and by the identification of the effective properties of the constituent phases are discussed. In the presented approach, models are generated by numerically simulating the packing of bundles and phases are identified by means of tests and numerical analyses, which are performed on long fibre-reinforced specimens and on specimens subjected to a thermal process for the elimination of carbon reinforcement. The approach is applied to find out the parameters of a homogenized orthotropic model for CMC plates. The obtained results show that the numerical packing simulations can generate models with a realistic distribution of size, shape and orientation of the bundles. The mesoscale model and the phase properties identified by the proposed numerical and experimental procedure are validated by considering the stiffness of standard CMC specimens obtained in three-point bending tests. According to the results, the developed methodologies can be considered as a promising approach for a reliable prediction of short fibre-reinforced CMC elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Christin F, Naslain R, Hagenmuller P, Choury JJ (1977) French patent, 77/26979, Sept 1977

  2. Naslain R, Rossignol JY, Hagenmuller P, Christin F, Héraud L, Choury JJ (1981) Rev Chim Miner 18:544

    CAS  Google Scholar 

  3. Fitzer E, Hegen D, Strohmeier H (1980) Rev Int Hautes Temp Refract 17:23

    CAS  Google Scholar 

  4. Krenkel W, Naslain R, Schneider H (2001) High temperature ceramic matrix composites. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Bansall NP (2005) Handbook of ceramic composites. Springer, Berlin

    Book  Google Scholar 

  6. Christin F (2002) Adv Eng Mater 4:903

    Article  CAS  Google Scholar 

  7. Van Roode M, Ferber MK, Richerson DW (2002) Ceramic gas turbine design and test experience: progress in ceramic gas turbine development, vols 1 and 2. ASME Press, New York

    Google Scholar 

  8. Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) J Nucl Mater 329–333(Part A):56

  9. Raffray AR, Jones R, Aiello G, Billone M, Giancarli L, Golfier H, Hasegawa A, Katoh Y, Kohyama A, Nishio S, Riccardi B, Tillack MS (2001) Fusion Eng Des 55:55

    Article  CAS  Google Scholar 

  10. Naslain R (2005) Int J Appl Ceram Technol 2:75

    Article  CAS  Google Scholar 

  11. Krenkel W, Berndt F (2005) Mater Sci Eng A412:177

    CAS  Google Scholar 

  12. Naslain R (2004) Compos Sci Technol 64:155

    Article  CAS  Google Scholar 

  13. Jones R, Szweda A, Petrak D (1999) Composites Part A 30:569

    Article  Google Scholar 

  14. Krenkel W, Henke T (1999) Key Eng Mater 164–165:421

    Article  Google Scholar 

  15. Krenkel W (2001) In: 25th Annual international conference on advanced ceramics & composites, Cocoa Beach (Florida, USA), January 2001

  16. Krenkel W, Renz R, Heidenreich B (2001) Ceramic materials and components for engines. Wiley-VCH, Weinheim

    Google Scholar 

  17. Krenkel W (2004) Int J Appl Ceram Technol 1:188

    Article  CAS  Google Scholar 

  18. Bohm HJ, Eckshlager A, Han W (2002) Comput Mater Sci 25:42

    Article  Google Scholar 

  19. Segurado J, Llorca J (2002) J Mech Phys Solids 50:2107

    Article  CAS  Google Scholar 

  20. Berger H, Kari S, Gabbert U, Ramos RR, Castillero JB, Díaz RG (2007) J Mech Mater Struct 2:1561

    Article  Google Scholar 

  21. Airoldi A, Di Landro L, Sirna M, Quintini S, Sala G (2009) In: Proceeding of XX AIDAA congress, Milano, Italy, June 29–July 3 2009

  22. Chawla N, Chawla KK (2006) J Mater Sci 41:913. doi:10.1007/s10853-006-6572-1

    Article  CAS  Google Scholar 

  23. Rice RW (1999) J Mater Sci 34:2769. doi:10.1023/A:1004606612294

    Article  CAS  Google Scholar 

  24. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis, London, p 144

    Google Scholar 

  25. Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites, 2nd edn. Wiley, New York, p 22

    Google Scholar 

  26. Richerson DW (1982) Modern ceramic engineering. Marcel Dekker, New York, p 72

    Google Scholar 

  27. Campbell FC Jr (2006) Manufacturing technology for aerospace structural materials. Elsevier, Amsterdam, p 468

    Google Scholar 

  28. Hinrichsen L, Feder J, Ossang T (1986) J Stat Phys. doi:10.1007/BF01011908

  29. Abaqus® (2004) Theory and user’s manuals. Hibbit, Karlsson & Sorensen. Pawtucket, USA

  30. Toll S (1998) Pol Eng Sci 38:1337

    Article  CAS  Google Scholar 

  31. Advani SG, Tucker CL (1987) J Rheol 31(8):751

    Article  CAS  Google Scholar 

  32. Gitman IM, Gitman MB, Askes H (2006) Arch Appl Mech 75:79

    Article  Google Scholar 

  33. Gitman IM, Askes H, Sluys LJ (2007) Eng Fract Mech 74:2518

    Article  Google Scholar 

  34. Monetto I, Drugan WJ (2009) J Mech Phys Solids 57:1578

    Article  Google Scholar 

Download references

Acknowledgements

The presented activity has been carried out within a collaboration between BSCCB (Brembo SGL Carbon Ceramic Brakes) and DIA (Dipartimento di Ingegneria Aerospaziale del Politecnico di Milano). The financial support and experimental collaboration of BSCCB is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Airoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Airoldi, A., Di Landro, L., Sirna, M. et al. Development of a numerical mesoscale material model for short fibre-reinforced ceramics matrix composites. J Mater Sci 48, 1646–1659 (2013). https://doi.org/10.1007/s10853-012-6922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6922-0

Keywords

Navigation