Journal of Materials Science

, Volume 48, Issue 4, pp 1571–1577 | Cite as

Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide

  • Jingyi Wang
  • Hongbing Jia
  • Yingying Tang
  • Dandan Ji
  • Yi Sun
  • Xuedong Gong
  • Lifeng Ding


Graphene oxide (GO)/carboxylated acrylonitrile butadiene rubber (xNBR) vulcanizates were prepared in this study by mixing exfoliated GO aqueous dispersion with xNBR latex. The GO monolayers were exfoliated from natural flake graphite by Hummers' method. This study shows that GO could be dispersed homogeneously in xNBR matrix up to 1.2 vol.%. Adding GO nanosheets has a great effect on the mechanical, thermal stability, thermal conductivity, and thermal diffusivity of GO/xNBR vulcanizates. With the incorporation of GO nanosheets, the thermal stability, thermal conductivity, and thermal diffusivity of GO/xNBR vulcanizates increased significantly. The mechanical property of GO/xNBR vulcanizates reached its peak with 1.2 vol.% of GO content. The addition of 1.2 vol.% of GO nanosheets largely enhanced the tensile strength and modulus at 100 % elongation of xNBR by more than 370 and 230 %, respectively. The thermal conductivity and diffusivity of the GO/xNBR vulcanizates with 1.6 vol.% of GO had 1.4- and 1.2-fold improvements, respectively, compared to that of unfilled xNBR vulcanizate.


Tensile Strength Graphene Oxide Dynamic Mechanical Analysis Rubber Matrix Dicumyl Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Nantex Co. Ltd. for supplying xNBR latex.

Supplementary material

10853_2012_6913_MOESM1_ESM.txt (15 kb)
Supplementary material 1 (txt 15 kb)


  1. 1.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) Prog Polym Sci 36(5):638. doi: 10.1016/j.progpolymsci.2010.11.003 CrossRefGoogle Scholar
  2. 2.
    Li B, Zhong WH (2011) J Mater Sci 46(17):5595. doi: 10.1007/s10853-011-5572-y CrossRefGoogle Scholar
  3. 3.
    Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) Compos Sci Technol 72(12):1459. doi: 10.1016/j.compscitech.2012.05.005 CrossRefGoogle Scholar
  4. 4.
    Wolska A, Goździkiewicz M, Ryszkowska J (2012) J Mater Sci 47(15):5627. doi: 10.1007/s10853-012-6433-z CrossRefGoogle Scholar
  5. 5.
    Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Small 7(14):1876. doi: 10.1002/smll.201002009 CrossRefGoogle Scholar
  6. 6.
    Kim J, Cote LJ, Huang J (2012) Acc Chem Res 45(8):1356CrossRefGoogle Scholar
  7. 7.
    Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed 50(14):3173. doi: 10.1002/anie.201007520 CrossRefGoogle Scholar
  8. 8.
    Paci JT, Belytschko T, Schatz GC (2007) J Phys Chem C 111(49):18099. doi: 10.1021/jp075799g CrossRefGoogle Scholar
  9. 9.
    Bai H, Li C, Shi G (2011) Adv Mater 23(9):1089. doi: 10.1002/adma.201003753 CrossRefGoogle Scholar
  10. 10.
    Veerapandian M, Lee MH, Krishnamoorthy K, Yun K (2012) Carbon 50(11):4228. doi: 10.1016/j.carbon.2012.05.004 CrossRefGoogle Scholar
  11. 11.
    Wang H, Hu YH (2011) Ind Eng Chem Res 50(10):6132. doi: 10.1021/ie102572q CrossRefGoogle Scholar
  12. 12.
    Petit C, Bandosz TJ (2009) J Phys Chem C 113(9):3800. doi: 10.1021/jp8097044 CrossRefGoogle Scholar
  13. 13.
    Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Carbon 49(9):3019. doi: 10.1016/j.carbon.2011.02.071 CrossRefGoogle Scholar
  14. 14.
    Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Science 321(5897):1815. doi: 10.1126/science.1162369 CrossRefGoogle Scholar
  15. 15.
    Chen L, Chai S, Liu K, Ning N, Gao J, Liu Q, Chen F, Fu Q (2012) ACS Appl Mater Interfaces 4(8):4398CrossRefGoogle Scholar
  16. 16.
    Jang JY, Kim MS, Jeong HM, Shin CM (2009) Compos Sci Technol 69(2):186. doi: 10.1016/j.compscitech.2008.09.039 CrossRefGoogle Scholar
  17. 17.
    Li YL, Kuan CF, Chen CH, Kuan HC, Yip MC, Chiu SL, Chiang CL (2012) Mater Chem Phys 134(2–3):677. doi: 10.1016/j.matchemphys.2012.03.050 CrossRefGoogle Scholar
  18. 18.
    Xu Y, Hong W, Bai H, Li C, Shi G (2009) Carbon 47(15):3538. doi: 10.1016/j.carbon.2009.08.022 CrossRefGoogle Scholar
  19. 19.
    Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012) J Membrane Sci 409:156. doi: 10.1016/j.memsci.2012.03.051 CrossRefGoogle Scholar
  20. 20.
    Cheng HKF, Sahoo NG, Tan YP, Pan YZ, Bao HQ, Li L, Chan SH, Zhao JH (2012) ACS Appl Mater Interfaces 4(5):2387. doi: 10.1021/am300550n CrossRefGoogle Scholar
  21. 21.
    Ma J, Liu CH, Li R, Wang J (2012) Properties and structural characterization of chitosan/poly(vinyl alcohol)/graphene oxide nano composites. E-PolymersGoogle Scholar
  22. 22.
    Wang Y, Shi Z, Fang J, Xu H, Yin J (2011) Carbon 49(4):1199. doi: 10.1016/j.carbon.2010.11.036 CrossRefGoogle Scholar
  23. 23.
    Luo F, Chen L, Ning NY, Wang K, Chen F, Fu Q (2012) J Appl Polym Sci 125(S1):E348. doi: 10.1002/app.36224 CrossRefGoogle Scholar
  24. 24.
    Du XS, Xiao M, Meng YZ, Hay AS (2004) Synth Met 143(1):129. doi: 10.1016/j.synthmet.2003.10.023 CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Tang GS, Yu ZZ, Qi JS (2012) Carbon 50(8):3064CrossRefGoogle Scholar
  26. 26.
    Li Y, Wang Q, Wang T, Pan G (2012) J Mater Sci 47(2):730. doi: 10.1007/s10853-011-5846-4 CrossRefGoogle Scholar
  27. 27.
    Bai X, Wan C, Zhang Y, Zhai Y (2011) Carbon 49(5):1608. doi: 10.1016/j.carbon.2010.12.043 CrossRefGoogle Scholar
  28. 28.
    Tang ZH, Wu XH, Guo BC, Zhang LQ, Jia DM (2012) J Mater Chem 22(15):7492. doi: 10.1039/c2jm00084a CrossRefGoogle Scholar
  29. 29.
    Das A, Jurk R, Stockelhuber KW, Sen Majumder P, Engelhardt T, Fritzsche J, Kluppel M, Heinrich G (2009) J Macromol Sci A 46(1):7. doi: 10.1080/10601320802511687 Google Scholar
  30. 30.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  31. 31.
    Cote LJ, Kim F, Huang J (2008) J Am Chem Soc 131(3):1043. doi: 10.1021/ja806262m CrossRefGoogle Scholar
  32. 32.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45(7):1558. doi: 10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  33. 33.
    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund (2006) Nano Lett 6(12):2667. doi: 10.1021/nl061420a CrossRefGoogle Scholar
  34. 34.
    Kim F, Cote LJ, Huang J (2010) Adv Mater 22(17):1954. doi: 10.1002/adma.200903932 CrossRefGoogle Scholar
  35. 35.
    Blanton TN, Majumdar D (2012) Powder Diffr 27(2):104. doi: 10.1017/s0885715612000292 CrossRefGoogle Scholar
  36. 36.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Adv Funct Mater 19(14):2297. doi: 10.1002/adfm.200801776 CrossRefGoogle Scholar
  37. 37.
    Du X, Yu Z-Z, Dasari A, Ma J, Mo M, Meng Y, Mai Y-W (2008) Chem Mater 20(6):2066. doi: 10.1021/cm703285s CrossRefGoogle Scholar
  38. 38.
    Chow WS, Abu Bakar A, Mohd Ishak ZA, Karger-Kocsis J, Ishiaku US (2005) Euro Polym J 41(4):687. doi: 10.1016/j.eurpolymj.2004.10.041 CrossRefGoogle Scholar
  39. 39.
    Dong Y, Bhattacharyya D, Hunter PJ (2008) Compos Sci Technol 68(14):2864. doi: 10.1016/j.compscitech.2007.10.026 CrossRefGoogle Scholar
  40. 40.
    Kim H, Miura Y, Macosko CW (2010) Chem Mater 22(11):3441. doi: 10.1021/cm100477v CrossRefGoogle Scholar
  41. 41.
    Huang YW, Zeng M, Ren J, Wang J, Fan LR, Xu QY (2012) Colloid Surface A 401:97. doi: 10.1016/j.colsurfa.2012.03.031 CrossRefGoogle Scholar
  42. 42.
    Vo LT, Anastasiadis SH, Giannelis EP (2011) Macromolecules 44(15):6162. doi: 10.1021/ma200044c CrossRefGoogle Scholar
  43. 43.
    Bokobza L, Erman B (2000) Macromolecules 33(23):8858. doi: 10.1021/ma000261t CrossRefGoogle Scholar
  44. 44.
    Zhao X, Zhang Q, Chen D, Lu P (2010) Macromolecules 43(5):2357. doi: 10.1021/ma902862u CrossRefGoogle Scholar
  45. 45.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Ind Crop Prod 32(3):627. doi: 10.1016/j.indcrop.2010.07.018 CrossRefGoogle Scholar
  46. 46.
    Dufresne A (2008) Can J Chem 86(6):484. doi: 10.1139/v07-152 CrossRefGoogle Scholar
  47. 47.
    Menard KP (2008) Dynamic mechanical analysis, 2nd edn. CRC Press, New York. doi: 10.1002/0471440264.pst102 CrossRefGoogle Scholar
  48. 48.
    Etmimi HM, Sanderson RD (2011) Macromolecules 44(21):8504. doi: 10.1021/ma2003008 CrossRefGoogle Scholar
  49. 49.
    Yang J, Tian M, Jia Q-X, Shi J-H, Zhang L-Q, Lim S-H, Yu Z–Z, Mai Y-W (2007) Acta Mater 55(18):6372. doi: 10.1016/j.actamat.2007.07.043 CrossRefGoogle Scholar
  50. 50.
    Janowska G, Rybiński P, Jantas R (2007) J Therm Anal Calorim 87(2):511. doi: 10.1007/s10973-006-7796-7 CrossRefGoogle Scholar
  51. 51.
    Im H, Kim J (2012) J Mater Sci 47(16):6025. doi: 10.1007/s10853-012-6510-3 CrossRefGoogle Scholar
  52. 52.
    Huang MJ, Chuang PY (2012) Int J Heat Mass Tran 55(13–14):3704. doi: 10.1016/j.ijheatmasstransfer.2012.02.070 CrossRefGoogle Scholar
  53. 53.
    Hu YZ, Shen JF, Li N, Ma HW, Shi M, Yan B, Huang WS, Wang WB, Ye MX (2010) Compos Sci Technol 70(15):2176CrossRefGoogle Scholar
  54. 54.
    Al-Juaid SS, El-Mossalamy EH, Arafa HM, Al-Ghamdi AA, Daiem AMA, El-Tantawy F (2011) J Appl Polym Sci 121(6):3604. doi: 10.1002/App.34158 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jingyi Wang
    • 1
  • Hongbing Jia
    • 1
  • Yingying Tang
    • 1
  • Dandan Ji
    • 1
  • Yi Sun
    • 1
  • Xuedong Gong
    • 1
  • Lifeng Ding
    • 2
  1. 1.Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Department of Chemical EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations