Journal of Materials Science

, Volume 48, Issue 4, pp 1562–1570 | Cite as

Conduction mechanisms in Si-LiNbO3 heterostructures grown by ion-beam sputtering method

  • V. Ievlev
  • M. Sumets
  • A. Kostyuchenko


The polycrystalline films LiNbO3 on the substrates (001) Si with the spontaneous orientation of grains are developed by the ion-beam sputtering method. The mechanisms of conductivity in the interval of temperatures T = 90–400 K are investigated by the method of the current–voltage characteristics. The initial site of the current–voltage characteristics is defined by the properties of contact Si-LiNbO3 and is described within the framework of Fowler–Nordheim tunneling and Richardson–Schottky emission. At the high voltage, the conductivity is defined by the volume of the film LiNbO3 and is described by the thermo-assisted tunneling of the electrons through the intercrystalline barriers with the height φb = 0.7 eV. The parameters of the traps presented in the band gap of LiNbO3 are defined.


Versus Characteristic LiNbO3 Rutherford Backscattering Spectrometry Specific Contact Resistance Ohmic Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express gratitude to Professor Bezryadin N.N. (Voronezh State University of Engineering Technologies) for valuable discussions on the contents of this paper.


  1. 1.
    Lee T-H, Hwang F-T, Lee C-T, Lee H-Y (2007) Mater Sci Eng 136:92CrossRefGoogle Scholar
  2. 2.
    Park S-K, Baek M-S, Bae S-C, Kwon S-Y, Kim J-H, Kim K-W (1999) Jpn J Appl Phys 38:6483CrossRefGoogle Scholar
  3. 3.
    Lim D-G, Jang B-S, Yi J (2000) In: Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics 2000, ISAF 2000, vol 2, p 1013Google Scholar
  4. 4.
    Iyevlev V, Kostyuchenko A, Sumets M, Vakhtel V (2011) J Mater Sci: Mater Electron 22:1258CrossRefGoogle Scholar
  5. 5.
    Chenti M-T, Bouyssou E, Ventura L, Anceau C (2009) J Appl Phys 105:061605CrossRefGoogle Scholar
  6. 6.
    Damjanovic D (1998) Rep Prog Phys 61:1267CrossRefGoogle Scholar
  7. 7.
    Waser R, Klee M (1992) Integr Ferroelectr 2:23CrossRefGoogle Scholar
  8. 8.
    Duiker HM, Beale PD, Scott JF, Paz de Araujo CA, Melnick BM, Cuchiaro JD, McMillan LD (1990) J Appl Phys 68:5783CrossRefGoogle Scholar
  9. 9.
    Scott JF, Paz de Araujo CA, Melnick BM, McMillan LD, Zuleeg R (1991) J Appl Phys 70:382CrossRefGoogle Scholar
  10. 10.
    Yoo IK, Desu SB (1992) Phys Status Solidi A 133:565CrossRefGoogle Scholar
  11. 11.
    Sze SM (1969) Physics of semiconductor devices. Wiley Inter-Science, New York, p 812Google Scholar
  12. 12.
    Maissel LI, Glang R (1983) Handbook of thin film technology. McGraw Hill Book Company, New YorkGoogle Scholar
  13. 13.
    Simmons JG (1965) Phys Rev Lett 15:967CrossRefGoogle Scholar
  14. 14.
    Padovani FA, Stratton R (1966) Solid State Electron 9:695CrossRefGoogle Scholar
  15. 15.
    Ponce MA, Bueno PR, Varela J, Castro MS, Aldao CM (2008) J Mater Sci: Mater Electron 19:1169CrossRefGoogle Scholar
  16. 16.
    Nyamhere C, Das AGM, Auret FD, Hayes C M (2008) J Phys: Conf Ser 100:042004CrossRefGoogle Scholar
  17. 17.
    Knack S, Weber J (2002) Phys Rev B 65:165203-1CrossRefGoogle Scholar
  18. 18.
    Karachevtseva LA, Lytvynenko OA, Malovichko EA, Sobolev VD, Stronska OJ (2001) Semicond Phys Quantum Electron Optoelectron 4:40Google Scholar
  19. 19.
    Ievlev VM, Sumets MP, Kostyuchenko AV (2012) Mater Sci Forum 700:53CrossRefGoogle Scholar
  20. 20.
    Iyevlev V, Kostyuchenko A, Sumets M (2011) Proc SPIE 7747:77471J-1Google Scholar
  21. 21.
    Simoes AZ, Gonza′lez AHM, Ries A, Zaghete MA, Stojanovic BD, Varela JA (2003) Mater Charact 50:239CrossRefGoogle Scholar
  22. 22.
    Easwaran N, Balasubramanian C, Narayandass SAK, Mangalaraj D (1999) Phys Status Solidi A 129:443CrossRefGoogle Scholar
  23. 23.
    Shandilya S, Tomar M, Sreenivas K, Gupta V (2009) J Appl Phys 105(9):094105CrossRefGoogle Scholar
  24. 24.
    Iyevlev V, Sumets M, Kostyuchenko A (2012) J Mater Sci: Mater Electron 23:913CrossRefGoogle Scholar
  25. 25.
    Liu B-C, Liu C-H, Fu Z-X, Bo Y (2009) Chin Phys Lett 26:117101-1Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Voronezh State University of Architecture and Civil EngineeringVoronezhRussia

Personalised recommendations