Journal of Materials Science

, Volume 48, Issue 3, pp 1324–1329 | Cite as

Pressure-enhanced ferromagnetism and metallicity in La1.24Sr1.76Mn2O7 bilayered manganite system

  • M. Kumaresavanji
  • E. M. B. Saitovitch
  • J. P. Araujo
  • M. B. Fontes


We report the low temperature magnetization, electrical resistance, and magnetoresistance of La1.24Sr1.76Mn2O7 bilayer manganite system under hydrostatic pressure. At ambient pressure, the compound shows a sharp ferromagnetic transition (T C) accompanied by a metal–insulator transition (T MI) at 130 K. We observe that the T C and T MI increase with hydrostatic pressure at a rate of dT C/dP = 2.08 K/kbar and dT MI/dP = 2 K/kbar, respectively. Also, we observe an appreciable increase of magnetic moments at low temperatures with increasing pressure. The high temperature regime of temperature dependence of resistivity curves was fitted with the Emin–Holstein’s polaron hopping model and the calculated activation energy values suggest that the applied pressure weakens the formation of Jahn–Teller polarons. The magnetoresistance ratio (MRR) was measured at T C and at 4.2 K upon an external magnetic field of 5 T. The observed MRR at T C is about 210 % and the applied pressure increases the MRR significantly. These results can be interpreted by the pressure-enhanced overlap between the orbitals of Mn–O–Mn, which facilitates the charge transfer and hence enhances the ferromagnetism and metallicity.


Mn2O7 Hydrostatic Pressure Manganite Applied Pressure Charge Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.K. is thankful to FCT, Portugal for the grant SFRH/BPD/75110/2010. This work was supported by the CNPq, Brazil and TWAS, Italy.


  1. 1.
    Dagotto E, Hotta T, Moreo A (2001) Phys Rep 344:1CrossRefGoogle Scholar
  2. 2.
    Tokura Y, Tomioka Y (1999) J Magn Magn Mater 200:1CrossRefGoogle Scholar
  3. 3.
    Kimura T, Tokura Y (2000) Annu Rev Mater Sci 30:451CrossRefGoogle Scholar
  4. 4.
    Ram RAM, Ganguly P, Rao CNR (1987) J Solid State Chem 70:82CrossRefGoogle Scholar
  5. 5.
    Zener C (1951) Phys Rev 82:403CrossRefGoogle Scholar
  6. 6.
    Anderson PW, Hasegawa H (1955) Phys Rev 100:675CrossRefGoogle Scholar
  7. 7.
    Millis AJ, Littlewood PB, Shraiman BI (1995) Phys Rev Lett 74:5144CrossRefGoogle Scholar
  8. 8.
    Argyriou DN, Mitchell JF, Goodenough JB, Chmaissem O, Short S, Jorgensen JD (1997) Phys Rev Lett 78:1568CrossRefGoogle Scholar
  9. 9.
    Ishihara S, Okamoto S, Maekawa S (1997) J Phys Soc Jpn 66:2965CrossRefGoogle Scholar
  10. 10.
    Kumar RS, Prabhakaran D, Boothroyd A, Nicol MF, Cornelius A (2006) J Phys Chem Solids 67:2046CrossRefGoogle Scholar
  11. 11.
    Moritomo Y, Hirota K, Nakao H, Kiyama T, Murakami Y, Okamoto S, Ishihara S, Maekawa S, Kubota M, Yoshizawa H (2000) Phys Rev B 62:17CrossRefGoogle Scholar
  12. 12.
    Kamenev KV, McIntyre GJ, Arnold Z, Kamarad J, Lees MR, Balakrishnan G, Chung EML, Paul DMcK (2001) Phys Rev Lett 87:167203CrossRefGoogle Scholar
  13. 13.
    Mitchell JF, Ling CD, Millburn JE, Argyriou DN, Berger A, Medarde M, Miller D, Luo ZP (2002) Appl Phys A 74:S1776CrossRefGoogle Scholar
  14. 14.
    Sun Z, Douglas JF, Fedorov AV, Chuang YD, Zheng H, Mitchell JF, Dessau DS (2007) Nat Phys 3:248CrossRefGoogle Scholar
  15. 15.
    Kumaresavanji M, Reis MS, Xing YT, Fontes MB (2009) J Appl Phys 106:093709CrossRefGoogle Scholar
  16. 16.
    Kubota M, Fujioka H, Hirota K, Ohoyama K, Moritomo Y, Yoshizawa H, Endoh Y (2000) J Phys Soc Jpn 69:1606CrossRefGoogle Scholar
  17. 17.
    Wang A, Cao G, Liu Y, Long Y, Li Y, Feng Z, Ross JH (2005) J Appl Phys 97:103906CrossRefGoogle Scholar
  18. 18.
    Argyriou DN, Mitchell JF, Potter CD, Bader SD, Kleb R, Jorgensen JD (1997) Phys Rev B 55:R11965CrossRefGoogle Scholar
  19. 19.
    Holstein T (1959) Ann Phys 8:325CrossRefGoogle Scholar
  20. 20.
    Zhou JS, Goodenough JB, Mitchell JF (2000) Phys Rev B 61:R9217CrossRefGoogle Scholar
  21. 21.
    Murata T, Kushida H, Terai T, Kakeshita T (2007) J Magn Magn Mater 310:1555CrossRefGoogle Scholar
  22. 22.
    Ding Y, Haskel D, Tseng YC, Kaneshita E, van Veenendaal M, Mitchell JF, Sinogeikin SV, Prakapenka V, Mao HK (2009) Phys Rev Lett 102:237201CrossRefGoogle Scholar
  23. 23.
    Kimura T, Asamitsu A, Tomioka Y, Tokura Y (1997) Phys Rev Lett 79:3720CrossRefGoogle Scholar
  24. 24.
    Moritomo Y, Asamitsu A, Tokura Y (1995) Phys Rev B 51:16491CrossRefGoogle Scholar
  25. 25.
    Chang CF, Chou PH, Tsay HL, Weng SS, Chatterjee S, Yang HD, Liu RS, Shen CH, Li WH (1998) Phys Rev B 58:12224CrossRefGoogle Scholar
  26. 26.
    Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041CrossRefGoogle Scholar
  27. 27.
    Dorr K, Muller KH, Ruck K, Krabbes G, Schultz L (1999) J Appl Phys 85:5420CrossRefGoogle Scholar
  28. 28.
    Julliere M (1975) Phys Lett A 54:225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Kumaresavanji
    • 1
  • E. M. B. Saitovitch
    • 2
  • J. P. Araujo
    • 1
  • M. B. Fontes
    • 2
  1. 1.Department of Physics and Astronomy, Faculty of Sciences, IFIMUP and IN-Institute of Nanoscience and NanotechnologyUniversity of PortoPortoPortugal
  2. 2.Centro Brasileiro de Pesquisas Fisicas (CBPF)Rio de JaneiroBrazil

Personalised recommendations