Advertisement

Journal of Materials Science

, Volume 48, Issue 3, pp 997–1004 | Cite as

Evolution of texture and development of ∑3 n grain clusters in 316 austenitic stainless steel during thermal mechanical processing

  • Xiaoying Fang
  • Zhiyong Liu
  • M. Tikhonova
  • A. Belyakov
  • Weiguo Wang
Article

Abstract

A type 316 austenitic stainless steel sheet with various texture components along its thickness was slightly cold-rolled and then sequentially annealed at 1000 °C for 80 and 150 min. The evolution of texture and the development of grain clusters in which the grains are interfaced by ∑3 n (n = 0, 1, 2, 3…) boundaries (∑3 n GC) were studied by electron backscatter diffraction (EBSD). The results show that the texture difference along the thickness was minimized, and large (greater than 400 μ) ∑3 n GCs developed after cold rolling and annealing. In situ EBSD examination revealed that each ∑3 n GC was developed by the oriented-growth (OG) of brass ({110}\( \langle 112\rangle \)), copper ({112}\( \langle 111\rangle \)) and C1 ({114}\( \langle 041\rangle \)) orientations (including their geometric variants). These orientations are intrinsically related to ∑3 n misorientations. The abutting ∑3 n GCs with grains of nearly the same or ∑3 n -related orientations usually merged into a larger ∑3 n GC or resulted in an effective disruption of the connectivity of the random high angle grain boundary network.

Keywords

Austenitic Stainless Steel Texture Evolution Orientation Distribution Function Orientation Imaging Microscopy EBSD Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China under Grants Nos. 50974147 and 51111120089/E0107, the Natural Science Foundation of Shandong Province under Grant No. 2009ZRB01176, and the Russian Foundation for Basic Research under Grant No. 11-08-91163.

References

  1. 1.
    Watanabe T (1984) Res Mech 11:47Google Scholar
  2. 2.
    Lin P, Palumbo G, Erb U, Aust KT (1995) Scripta Metall Mater 33:1387CrossRefGoogle Scholar
  3. 3.
    Kumar M, Schwartz AJ, King WE (2002) Acta Mater 50:2599CrossRefGoogle Scholar
  4. 4.
    Zhou Y, Aust KT, Erb U, Palumbo G (2001) Scripta Mater 45:49CrossRefGoogle Scholar
  5. 5.
    Gertsman VY, Henager CH (2003) Interf Sci 11:403CrossRefGoogle Scholar
  6. 6.
    Reed BW, Kumar M (2006) Scripta Mater 54:1029CrossRefGoogle Scholar
  7. 7.
    Cayron C (2011) Acta Mater 59:252CrossRefGoogle Scholar
  8. 8.
    Fang XY, Wang WG, Cai ZX, Qin CX, Zhou BX (2010) Mater Sci Eng A527:1571Google Scholar
  9. 9.
    Shimada M, Kokawa H, Wang ZJ (2002) Acta Mater 50:2331CrossRefGoogle Scholar
  10. 10.
    Michiuchi M, Kokawa H, Wang ZJ, Sato YS, Sakai K (2006) Acta Mater 54:5179CrossRefGoogle Scholar
  11. 11.
    Fang XY, Zhang K, Guo H, Wang WG, Zhou BX (2008) Mater Sci Eng A 487:7CrossRefGoogle Scholar
  12. 12.
    King WE, Schwartz AJ (1998) Scripta Mater 38:440Google Scholar
  13. 13.
    Lee DS, Ryoo HS, Hwang SK (2003) Mater Sci Eng A 354:106CrossRefGoogle Scholar
  14. 14.
    Xia S, Zhou BX, Chen WJ, Wang WG (2006) Scripta Mater 54:2019CrossRefGoogle Scholar
  15. 15.
    Liu T, Shuang S, Li H, Zhou BX, Chen W (2011) Acta Metall Sinica 47:859Google Scholar
  16. 16.
    Cai Z, Wang WG, Fang XY, Guo H (2010) Acta Metall Sinica 46:769CrossRefGoogle Scholar
  17. 17.
    Wang WG, Zhou BX, Guo H (2010) Mater Sci Forum 638–642:2864CrossRefGoogle Scholar
  18. 18.
    Wang WG, Zhou BX, Rohrer GS, Guo H, Cai ZX (2010) Mater Sci Eng A527:3695Google Scholar
  19. 19.
    Gottstein G (1984) Acta Metall 32:1117CrossRefGoogle Scholar
  20. 20.
    Mishin OV, Gertsman VY, Gottstein G (1997) Mater Characterization 38:39CrossRefGoogle Scholar
  21. 21.
    Mishin OV, Gottstein G (1998) Mater Sci Eng A 249:71CrossRefGoogle Scholar
  22. 22.
    Brandon DG (1966) Acta Metall 14:1479CrossRefGoogle Scholar
  23. 23.
    Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ et al (1997) Mater Sci Eng A238:219Google Scholar
  24. 24.
    Fullman RL, Fisher JC (1951) J Appl Phys 22:1350CrossRefGoogle Scholar
  25. 25.
    Kurzydlowski KJ (1991) Scripta Metall 25:1099CrossRefGoogle Scholar
  26. 26.
    Wang WG, Dai Y, Li JH, Liu BX (2011) Cryst Growth Des 11:2928CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiaoying Fang
    • 1
  • Zhiyong Liu
    • 1
  • M. Tikhonova
    • 2
  • A. Belyakov
    • 2
  • Weiguo Wang
    • 1
  1. 1.School of Mechanical EngineeringShandong University of TechnologyZiboChina
  2. 2.Belgorod State UniversityBelgorodRussia

Personalised recommendations