Journal of Materials Science

, Volume 48, Issue 2, pp 960–966 | Cite as

Wetting and reaction of molten La with poly- and mono-crystalline MgO at 1323 K

  • Longlong Yang
  • Ping Shen
  • Xiaoshuang Cong
  • Qichuan Jiang


Wetting of poly- and mono-crystalline MgO substrates by molten La was investigated at 1323 K in a high vacuum using a modified sessile drop method. The wettability seems to depend mildly on the substrate orientation but strongly on the surface roughness. The initial contact angles on the smooth (100), (110), and (111) surfaces are 63° ± 1°, 69° ± 1°, and 69° ± 1°, respectively, while on the rough polycrystalline surfaces they are much larger (104° ± 3°). The wetting behavior is dictated by the disruption of the oxide film covering the La surface, the extent of the interfacial reaction and the evolution of the reaction product. A thick layer of La2O3 phase formed at the interface and then enwrapped the liquid surface, leading to the recession and warping of the triple line and finally the deterioration in the wettability. On the other hand, magnesium was displaced by the reaction and its evaporation provided additional impetus for the movement of the triple line. Due to different reaction intensities, the wetting behavior of La on the different orientations of the MgO surfaces also showed some discrepancies.


Contact Angle Interfacial Reaction Reaction Layer Triple Line Initial Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is supported by the National Basic Research Program of China (973 Program, Grant No. 2012CB619600) and partly by the Foundation for the Outstanding Youth Scholar of Jilin University (Grant No. 201005004).


  1. 1.
    Wu CML, Yu DQ, Law CMT, Wang L (2004) Mater Sci Eng R 44:1–44CrossRefGoogle Scholar
  2. 2.
    Chang JY, Kim GH, Moon IG, Choi CS (1998) Scripta Mater 39:307–314CrossRefGoogle Scholar
  3. 3.
    Shao N, Dai JW, Li GY, Nakae H, Hane T (2004) Mater Lett 58:2041–2044CrossRefGoogle Scholar
  4. 4.
    Kononenko VI, Shveikin GP, Shevchenko VG, Galaktionov VN, Torokin VV, Golubev SV, Ryabina AV, Konyukova AV (2001) Inorg Mater 37:678–683CrossRefGoogle Scholar
  5. 5.
    Sobczak N, Nowak R, Asthana R, Purgert R (2010) Scripta Mater 62:949–954CrossRefGoogle Scholar
  6. 6.
    Parra R, Voytovych R, Eustathopoulos N (2007) Metall Mater Trans B 38:347–349CrossRefGoogle Scholar
  7. 7.
    Choudhary VR, Rane VH, Chaudhari ST (2000) Fuel 79:1487–1491CrossRefGoogle Scholar
  8. 8.
    Shen P, Zheng XH, Lin QL, Zhang D, Jiang QC (2009) Metall Mater Trans A 40:444–449CrossRefGoogle Scholar
  9. 9.
    Barin I (1995) Thermochemical data of pure substances, 3rd ed., Wiley, WeinheimGoogle Scholar
  10. 10.
    Yong-Taeg O, Fujino S, Morinaga K (2002) Sci Technol Adv Mat 3:297–301CrossRefGoogle Scholar
  11. 11.
    Breaudry BJ, Gschneidner KA Jr (1978) In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 1. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Samsonov GV (1981) The oxide handbook, 2nd edn. IFI/Plenum, New YorkGoogle Scholar
  13. 13.
    Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Saylor DM, Mason DE, Rohrer GS (2000) J Am Ceram Soc 83:1226–1232CrossRefGoogle Scholar
  15. 15.
    Saylor DM, Rohrer GS (2001) Interface Sci 9:35–42CrossRefGoogle Scholar
  16. 16.
    Kinderlehrer D, Asan ST, Livshits I, Mason DE (2002) Interface Sci 10:233–242CrossRefGoogle Scholar
  17. 17.
    Tasker PW (1984) In: Kingry WD (ed) Advances in ceramics, vol 10. American Ceramic Society, ColumbusGoogle Scholar
  18. 18.
    Gibson A, Haydock R, LaFemina JP (1992) J Vac Sci Technol A 10:2361–2366CrossRefGoogle Scholar
  19. 19.
    Henrich VE (1976) Surf Sci 57:385–392CrossRefGoogle Scholar
  20. 20.
    Plass R, Feller J, Gajdardziska-Josifovska M (1998) Surf Sci 414:26–37CrossRefGoogle Scholar
  21. 21.
    Chern G, Huang JJ, Leung TC (1998) J Vac Sci Technol A 16:964–967CrossRefGoogle Scholar
  22. 22.
    Watson GW, Kelsey ET, de Leew NH, Harris DJ, Parker SC (1996) J Chem Soc Faraday Trans 96:433–438CrossRefGoogle Scholar
  23. 23.
    Gajdardziska-Josifovska M, Crozier PA, Cowley JM (1991) Surf Sci Lett 248:L259–L264Google Scholar
  24. 24.
    Plass R, Egan K, Collzao-Davila C, Grozea D, Landree E, Marks LD, Gajdardziska-Josifovska M (1998) Phys Rev Lett 81:4891–4894CrossRefGoogle Scholar
  25. 25.
    Nogi K, Tsujimoto M, Ogino K, Iwamoto N (1992) Acta Metall Mater 40:1045–1050CrossRefGoogle Scholar
  26. 26.
    Chatain D (2008) Annu Rev Mater Res 38:45–70CrossRefGoogle Scholar
  27. 27.
    Backhaus-Ricoult M (2001) Acta Mater 49:1747–1758CrossRefGoogle Scholar
  28. 28.
    Massalski TB (1996) Binary phase diagram. ASM Int (CD–ROM edition)Google Scholar
  29. 29.
    Zheng CG, Wang SY, Liao FH, Tian SJ, Li GB (1999) J Alloys Compd 289:257–259CrossRefGoogle Scholar
  30. 30.
    Vanderah TA, Miller VL, Levin I, Bell SM, Negas T (2004) J Solid State Chem 177:2023–2038CrossRefGoogle Scholar
  31. 31.
    Surat LL, Slobodin BV, Vladimirova EV (2000) Dokl Chem 375:233–235CrossRefGoogle Scholar
  32. 32.
    Shen P, Zhang D, Lin QL, Shi LX, Jiang QC (2010) Mater Chem Phys 122:290–294CrossRefGoogle Scholar
  33. 33.
    Ashworth JR (1993) Am Mineral 78:331–337Google Scholar
  34. 34.
    Shen P, Fujii H, Matsumoto T, Nogi K (2004) Acta Mater 52:887–898CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Longlong Yang
    • 1
  • Ping Shen
    • 1
  • Xiaoshuang Cong
    • 1
  • Qichuan Jiang
    • 1
  1. 1.Key Laboratory of Automobile Materials (Ministry of Education), Department of Materials Science and EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations