Advertisement

Journal of Materials Science

, Volume 48, Issue 2, pp 941–947 | Cite as

Capillary rise properties of porous mullite ceramics prepared by an extrusion method with various diameters of fiber pore formers

  • Catalin Popa
  • Yuki Okayasu
  • Ken-ichi Katsumata
  • Toshihiro Isobe
  • Nobuhiro Matsushita
  • Akira Nakajima
  • Taisuke Kurata
  • Kiyoshi Okada
Article

Abstract

Porous mullite ceramics with unidirectionally oriented pores were prepared by an extrusion method using rayon fibers as the pore formers. Rayon fibers of 8.1, 9.6, 16.8, and 37.6 μm in diameter were used as the pore formers and were kneaded with alumina powder, kaolin clay, China earthen clay, and water to form pastes. These pastes were extruded into cylindrical tubes, dried, and fired at 1500 °C for 4 h. The apparent porosities ranged from 45.7 to 48.2 %. The pore size distributions showed a sharp peak at 9.4, 10.0, 15.6, and 30 μm with increasing fiber diameters. The height of the capillary rise was 1780, 1670, 1320, and 950 mm with increasing fiber diameter. The maximum capillary rise is much higher than previously reported. The contact angle and effective pore radius that determine the capillary rise ability were calculated by fitting the capillary rise curves using the Fries and Dreyer’s equation.

Keywords

Contact Angle Fiber Diameter Capillary Rise Porous Ceramic Apparent Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A part of this work was supported by the Grant for Application of Industrial Technology Innovation of the New Energy and Industrial Technology Development Organization of Japan (NEDO) under Contract No. 0827001. The authors thank Professor E. Sakai of the Tokyo Institute of Technology for permitting the use of the instrument for Hg porosimetry. We thank Professor K.J.D. MacKenzie of Victoria University of Wellington for critical reading and editing of this manuscript.

References

  1. 1.
    Okada K, Isobe T, Katsumata K, Kameshima Y, Nakajima A, MacKenzie KJD (2011) Sci Tech Adv Mater 12:064701CrossRefGoogle Scholar
  2. 2.
    Isobe T, Tomita T, Kameshima Y, Nakajima A, Okada K (2006) J Eur Ceram Soc 26:957CrossRefGoogle Scholar
  3. 3.
    Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2006) J Eur Ceram Soc 26:2213CrossRefGoogle Scholar
  4. 4.
    Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2006) J Porous Mater 13:269CrossRefGoogle Scholar
  5. 5.
    Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2007) J Eur Ceram Soc 27:53CrossRefGoogle Scholar
  6. 6.
    Isobe T, Kameshima Y, Nakajima A, Okada K (2007) J Eur Ceram Soc 27:61CrossRefGoogle Scholar
  7. 7.
    Okada K, Kameshima Y, Nakajima A, Madhusoodana CD (2007) J Heat Island Inst Int 2:1Google Scholar
  8. 8.
    Okada K, Uchiyama S, Isobe T, Kameshima Y, Nakajima A, Kurata T (2009) J Eur Ceram Soc 29:2491CrossRefGoogle Scholar
  9. 9.
    Kubota T, Sugimoto H, Komiya H (2003) Rep Obayashi Tech Inst 67:1Google Scholar
  10. 10.
    Patro D, Bhattacharyya S, Jayaram V (2007) J Am Ceram Soc 90:3040CrossRefGoogle Scholar
  11. 11.
    Washburn EW (1921) Phys Rev 17:273CrossRefGoogle Scholar
  12. 12.
    Fries N, Dreyer M (2008) J Colloid Interface Sci 320:259CrossRefGoogle Scholar
  13. 13.
    Fries N, Dreyer M (2008) J Colloid Interface Sci 327:125CrossRefGoogle Scholar
  14. 14.
    He J, Hoyano A (2010) Build Environ 45:461CrossRefGoogle Scholar
  15. 15.
    Maatta J, Piispanen M, Kuisma R, Kymalainen HR, Uusi-Rauva A, Hurme KR, Areva S, Sjoberg AM, Hupa L (2007) J Eur Ceram Soc 27:4555CrossRefGoogle Scholar
  16. 16.
    Zhang X, Zhou J, Wang J, Jiang Y (2009) J Mater Sci 44:2938. doi: 10.1007/s10853-009-3389-8 Google Scholar
  17. 17.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546Google Scholar
  18. 18.
    Cansoy CE, Erbil HY, Akar O, Akin T (2011) Colloids Surf A 386:116Google Scholar
  19. 19.
    Nakajima A (2007) Control of wettability of solid surfaces. Uchida Rokakuho, Tokyo, p 70Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Catalin Popa
    • 1
  • Yuki Okayasu
    • 2
  • Ken-ichi Katsumata
    • 2
  • Toshihiro Isobe
    • 1
  • Nobuhiro Matsushita
    • 2
  • Akira Nakajima
    • 1
  • Taisuke Kurata
    • 3
  • Kiyoshi Okada
    • 1
    • 2
  1. 1.Department of Metallurgy and Ceramics ScienceTokyo Institute of TechnologyTokyoJapan
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan
  3. 3.Kurata Refractory Co. Ltd., Hirono, FutabaFukushimaJapan

Personalised recommendations