Journal of Materials Science

, Volume 48, Issue 2, pp 913–919 | Cite as

Texture weakening of AZ31 magnesium alloy sheet obtained by a combination of bidirectional cyclic bending at low temperature and static recrystallization

  • Qinghuan Huo
  • Xuyue Yang
  • Jijun Ma
  • Huan Sun
  • Jun Wang
  • Lei Zhang


In this work, the grain refinement and texture weakening in the sheets of AZ31 magnesium alloy were studied by means of bidirectional cyclic bending for 6 passes at 423 K and subsequent static recrystallization (SRX) on two annealing conditions. The deformed and annealed samples were examined by optical microscopy and electron backscatter diffraction analysis. The results showed that a gradient structure with fine grains in the regions near the surfaces and, in contrast, coarse grains in the middle of the sheet were induced. The texture of the annealed samples was dramatically weakened, and the intensity decreased gradually from the center of the sheet to two surfaces. The different SRX mechanisms significantly affected the different weakening for the basal texture. The cumulative strain energy achieved by twinning played a more important role in the formation of an asymmetric gradient texture intensity distribution after annealing at 523 K for 1000 s. On the contrary, thermal energy dominated a symmetric gradient under annealing at 573 K for 100 s because of the preferential growth of new grains produced by SRX. The ductility is enhanced outstandingly with no remarkable improvement for the strength.


Ultimate Tensile Strength Alloy Sheet Basal Texture Orientation Imaging Microscopy Warm Rolling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support from the National Science Foundation of China (Grant No. 51071182).


  1. 1.
    Chapuis A, Driver JH (2011) Acta Mater 59:1986CrossRefGoogle Scholar
  2. 2.
    Chino Y, Kimura K, Mabuchi M (2009) Acta Mater 57:1476CrossRefGoogle Scholar
  3. 3.
    Yang X, Okabe Y, Miura H, Sakai T (2012) Mater Des 36:626CrossRefGoogle Scholar
  4. 4.
    Galiyev A, Kaibyshev R (2004) Scripta Mater 51:89CrossRefGoogle Scholar
  5. 5.
    Xing J, Soda Y, Yang X, Miura H, Sakai T (2005) Mater Trans 46:1646CrossRefGoogle Scholar
  6. 6.
    Yang Q, Ghosh AK (2006) Acta Mater 54:5147CrossRefGoogle Scholar
  7. 7.
    Mackenzie LWF, Pekguleryuz MO (2008) Scripta Mater 59:665CrossRefGoogle Scholar
  8. 8.
    Yang XY, Zhu YK, Miura H, Sakai T (2010) Trans Nonferrous Met Soc China 20:1269CrossRefGoogle Scholar
  9. 9.
    Chino Y, Sassa K, Kamiya A, Mabuchi M (2006) Mater Sci Eng A 441:349CrossRefGoogle Scholar
  10. 10.
    Chino Y, Sassa K, Mabuchi M (2009) J Mater Sci 44:1821CrossRefGoogle Scholar
  11. 11.
    Cheng YQ, Chen ZH, Xia WJ, Zhou T (2007) J Mater Process Technol 184:97CrossRefGoogle Scholar
  12. 12.
    Huang X, Suzuki K, Watazu A, Shigematsu I, Saito N (2009) J Alloys Compd 479:726CrossRefGoogle Scholar
  13. 13.
    Gong X, Kang SB, Li S, Cho JH (2009) Mater Des 30:3345CrossRefGoogle Scholar
  14. 14.
    Kim WJ, Yoo SJ, Chen ZH, Jeong HT (2009) Scripta Mater 60:897CrossRefGoogle Scholar
  15. 15.
    Huang X, Suzuki K, Saito N (2009) Scripta Mater 61:445CrossRefGoogle Scholar
  16. 16.
    Huang X, Suzuki K, Chino Y (2011) J Alloys Compd 509:4854CrossRefGoogle Scholar
  17. 17.
    Huang X, Suzuki K, Chino Y, Mabuchi M (2012) J Mater Sci 47:4561CrossRefGoogle Scholar
  18. 18.
    Yang XY, Miura H, Sakai T (2007) Trans Nonferrous Met Soc China 17:1139CrossRefGoogle Scholar
  19. 19.
    Yang XY, Zhang L (2009) Acta Metall Sin 47:990Google Scholar
  20. 20.
    Wu XX, Yang XY, Zhang L, Zhang ZL (2011) Acta Metall Sin 47:140Google Scholar
  21. 21.
    Choi SH, Shin EJ, Seong BS (2007) Acta Mater 55:4181CrossRefGoogle Scholar
  22. 22.
    Li X, Yang P, Wang LN, Meng L, Cui F (2009) Mater Sci Eng A 517:160CrossRefGoogle Scholar
  23. 23.
    Li X, Yang P, Meng L, Cui FE (2010) Acta Metall Sin 46:147CrossRefGoogle Scholar
  24. 24.
    Yang X, Okabe Y, Miura H, Sakai T (2012) J Mater Sci 47:2823CrossRefGoogle Scholar
  25. 25.
    Zhang L, Yang XY, Huo QH, Tian F, Zhang YJ, Zhou XJ, Chen J (2011) Acta Metall Sin 47:990Google Scholar
  26. 26.
    Zrnik J, Dobatkin SV, Mamuzič I (2008) Metalurgija 47:211Google Scholar
  27. 27.
    Miura H, Maruoka T, Yang X, Jonas JJ (2012) Scripta Mater 66:49CrossRefGoogle Scholar
  28. 28.
    Su CW, Lu L, Lai MO (2008) Philos Mag 88:181CrossRefGoogle Scholar
  29. 29.
    Barnett MR (2007) Mater Sci Eng A 464:1CrossRefGoogle Scholar
  30. 30.
    Barnett MR (2007) Mater Sci Eng A 464:8CrossRefGoogle Scholar
  31. 31.
    Yang X, Miura H, Sakai T (2003) Mater Trans 44:197CrossRefGoogle Scholar
  32. 32.
    Yang X, Miura H, Sakai T (2005) Mater Trans 46:2981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Qinghuan Huo
    • 1
  • Xuyue Yang
    • 1
  • Jijun Ma
    • 1
  • Huan Sun
    • 1
  • Jun Wang
    • 1
  • Lei Zhang
    • 1
  1. 1.Educational Key Laboratory of Nonferrous Metal Materials Science and EngineeringSchool of Materials Science and Engineering, Central South UniversityChangshaChina

Personalised recommendations