Journal of Materials Science

, Volume 48, Issue 2, pp 785–796 | Cite as

Nanoscale plastic deformation mechanism in single crystal aragonite



Molecular dynamics simulations have been performed to study the dynamic behaviors of single crystal aragonite under indentation, tension, and compression. The elastic modulus and hardness of single crystalline aragonite measured in our simulations are found in good agreement with experimentally measured values. Our simulation results show that the mechanical properties of aragonite crystal, including the elastic modulus, hardness, strength, and toughness, strongly depend on the crystallographic orientations and loading conditions. We have identified that this dependence is resulted from different deformation mechanisms, i.e., phase transformation, amorphous phase formation, dislocation, and twining. This work is an attempt to identify the deformation mechanisms in aragonite and to establish the relationship between the dominant deformation mechanisms and its crystallographic orientations and loading conditions.


Aragonite Radial Distribution Function Stress Plateau Dislocation Nucleation Plastic Deformation Mechanism 



This work was supported by National Science Foundation under Award CMMI-0855795 and DARPA under Award Number N66001-10-1-4018. Simulations were performed at the High Performance Computing Center at the University of Florida.


  1. 1.
    Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Acta Mater 48:2383CrossRefGoogle Scholar
  2. 2.
    Berg GW (1986) Nature 324:50CrossRefGoogle Scholar
  3. 3.
    Bridgman PW (1938) Am J Sci 239:7CrossRefGoogle Scholar
  4. 4.
    Tyburczy JA, Ahrens TJ (1986) Geophys J Res 91:4730CrossRefGoogle Scholar
  5. 5.
    Biellmann C, Guyot F, Gillet P, Reynard B (1993) Eur J Mineral 5:503Google Scholar
  6. 6.
    Fiquet G, Guyot F, Itie LP (1994) Am Mineral 79:15Google Scholar
  7. 7.
    Martinez I, Zhang J, Reeder RJ (1996) Am Mineral 81:611Google Scholar
  8. 8.
    Lin C-C, Liu L-G (1997) Phys Chem Miner 24:149CrossRefGoogle Scholar
  9. 9.
    Luth RW (2001) Contrib Mineral Petrol 141:222CrossRefGoogle Scholar
  10. 10.
    Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Am Mineral 86:997Google Scholar
  11. 11.
    Ivanov BA, Deutsch A (2002) Phys Earth Planet Inter 129:131CrossRefGoogle Scholar
  12. 12.
    Santillán J, Williams Q (2004) Am Mineral 89:1348Google Scholar
  13. 13.
    Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Am Mineral 90:667CrossRefGoogle Scholar
  14. 14.
    Ono S, Kikegawa T, Ohishi Y (2007) Am Mineral 92:1246CrossRefGoogle Scholar
  15. 15.
    Oganov AR, Glass CW, Ono S (2006) Earth Planet Sci Lett 241:95CrossRefGoogle Scholar
  16. 16.
    Liu J, Duan JJ, Ossowski MM, Mei WN, Smith RH, Hardy JR (2001) Chem Mineral 28:586CrossRefGoogle Scholar
  17. 17.
    Bearchell CA, Heyes DM (2002) Mol Simul 28:517CrossRefGoogle Scholar
  18. 18.
    Sekkal W, Taleb N, Zaoui A, Shahrour I (2008) Am Mineral 93:1608CrossRefGoogle Scholar
  19. 19.
    Miyake A, Kawano J (2010) J Phys: Condens Matter 22:225402CrossRefGoogle Scholar
  20. 20.
    Ruiz-Hernandez SE, Grau-Crespo R, Ruiz-Salvador AR, de Leeuw NH (2010) Geochim Cosmochim Acta 74:1320CrossRefGoogle Scholar
  21. 21.
    Han YH, Li H, Wong TY, Bradt RC (1991) J Am Ceram Soc 74:3129CrossRefGoogle Scholar
  22. 22.
    Liu LG, Chen CC, Lin CC, Yang YJ (2005) Phys Chem Miner 32:97CrossRefGoogle Scholar
  23. 23.
    Kearney C, Zhao Z, Bruet BJF, Radovitzky R, Boyce MC, Ortiz C (2006) Phys Rev Lett 96:2555051CrossRefGoogle Scholar
  24. 24.
    Hitoshi S, Musun K (2005) Phys Chem Chem Phys 7:691CrossRefGoogle Scholar
  25. 25.
    Huggins ML (1922) Phys Rev 19:354CrossRefGoogle Scholar
  26. 26.
    Huang Z, Li H, Pan Z, Wei Q, Chao YJ, Li XD (2011) Sci Rep 1:1CrossRefGoogle Scholar
  27. 27.
    Villiers De (1971) Am Mineral 56:758Google Scholar
  28. 28.
    Smith W, Forester TR, Todorov IT (2007) STFC Daresbury Laboratory Daresbury. Warrington WA44AD, Cheshire, UKGoogle Scholar
  29. 29.
    Dick BG, Overhauser AW (1958) Phys Rev 112:90CrossRefGoogle Scholar
  30. 30.
    Gale J (2005) Handbook of materials modeling. Springer, Printed in the Netherlands, pp 1523–1558Google Scholar
  31. 31.
    Pavese A, Catti M, Price GD, Jackson RA (1992) Phys Chem Miner 19:80CrossRefGoogle Scholar
  32. 32.
    Dove MT, Winkler B, Leslie M, Harris MJ, Salje EKH (1992) Am Mineral 77:244Google Scholar
  33. 33.
    Jackson RA, Price GD (1992) Mol Simul 9:175CrossRefGoogle Scholar
  34. 34.
    Catti M, Pavese A, Gale GD (1993) Phys Chem Miner 19:472CrossRefGoogle Scholar
  35. 35.
    Jackson RA, Meenan PA, Price GD, Roberts KJ, Telfer GB, Wilde PJ (1995) Mineral Mag 59:617CrossRefGoogle Scholar
  36. 36.
    Jackson RA (2001) Curr Opin Solid State Mater Sci 5:463CrossRefGoogle Scholar
  37. 37.
    Braybrook AL, Heywood BR, Jackson RA, Pitt K (2002) J Cryst Growth 243:336CrossRefGoogle Scholar
  38. 38.
    Pavese A, Catti M, Parker SC, Wall A (1996) Phys Chem Miner 23:89CrossRefGoogle Scholar
  39. 39.
    Fisler DK, Gale JD, Cygan RT (2000) Am Mineral 85:217Google Scholar
  40. 40.
    Archer TD, Birse SEA, Dove MT, Redfern SAT, Gale JD, Cygan RT (2003) Phys Chem Miner 30:416CrossRefGoogle Scholar
  41. 41.
    Barthelat F, Espinosa HD (2007) Exp Mech 47:311CrossRefGoogle Scholar
  42. 42.
    Barthelat F, Espinosa HD (2003) SEM Annual conference and exposition on experimental and applied mechanics, p 187Google Scholar
  43. 43.
    Lu L, Chen X, Huang X, Lu K (2009) Science 323:607CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Huang H (2008) Nanoscale Res Lett 4:34CrossRefGoogle Scholar
  45. 45.
    Li XY, Wei YJ, Lu L, Lu K, Gao HJ (2010) Nature 464:877CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations