Skip to main content
Log in

Wetting of (0001) α-alumina single crystals by molten Mg–Al alloys in the presence of evaporation

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The wetting of (0001) α-alumina single crystals by Mg–Al alloys over a wide composition range at 1073 K was investigated using an improved sessile drop method in a flowing argon atmosphere. The initial contact angles are between 103° and 84°, almost linearly decreasing with increasing nominal Mg concentration, suggesting that the addition of Mg to Al improves the initial wettability. According to the evolution of contact angle and contact diameter, representative stages were identified to characterize the complex wetting behavior in the presence of evaporation. The wetting kinetics was dependent on the nominal Mg concentration in the alloy. Two patterns of “stick–slip” behavior were observed in the wetting process and interpreted by combining the effects of interfacial reaction and evaporation of magnesium. In addition, the dependence of the interfacial reaction on the Mg–Al alloy concentration was thermodynamically analyzed. The dominant reaction product at 1073 K should be MgO when x Mg > 9 mol%, while MgAl2O4 when x Mg < 9 mol%. However, because of the continuous consumption of Mg due to the evaporation and reaction, its concentration in the alloy progressively decreased with time. As a result, MgO formed usually earlier while MgAl2O4 later even for the alloys with higher than 9 mol% Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Delannay F, Froyen L, Deruyttere A (1987) J Mater Sci 22:1. doi:10.1007/BF01160545

    Article  CAS  Google Scholar 

  2. Shen P, Zhang D, Lin QL, Shi LX, Jiang QC (2010) Mater Chem Phys 122:290

    Article  CAS  Google Scholar 

  3. Fujii H, Izutani S, Matsumoto T, Kiguchi S, Nogi K (2006) Mater Sci Eng, A 417:99

    Article  Google Scholar 

  4. Shi LX, Shen P, Zhang D, Jiang QC (2011) Mater Chem Phys 130:1125

    Article  CAS  Google Scholar 

  5. Carnahan RD, Johnston TL, Li CH (1958) J Am Ceram Soc 41:343

    Article  CAS  Google Scholar 

  6. Champion JA, Keene BJ, Sillwood JM (1969) J Mater Sci 4:39. doi:10.1007/BF00555046

    Article  CAS  Google Scholar 

  7. John H, Hausner H (1986) J Mater Sci Lett 5:549

    Article  CAS  Google Scholar 

  8. Ip SW, Kucharski M, Toguri JM (1993) J Mater Sci Lett 12:1699

    Article  CAS  Google Scholar 

  9. Zhou XB, De Hosson JThM (1995) J Mater Sci 30:3571. doi:10.1007/BF00351867

    Article  CAS  Google Scholar 

  10. Levi G, Kaplan WD (2002) Acta Mater 50:75

    Article  CAS  Google Scholar 

  11. Saiz E, Tomsia AP, Cannon RM (1998) Acta Mater 46:2349

    CAS  Google Scholar 

  12. Saiz E, Tomsia AP, Suganuma K (2003) J Eur Ceram Soc 23:2787

    Article  CAS  Google Scholar 

  13. Ksiazek M, Sobczak N, Mikulowski B, Radziwill W, Surowiak I (2002) Mater Sci Eng, A 324:162

    Article  Google Scholar 

  14. Jonas TR, Cornie JA, Russell KC (1995) Metall Mater Trans A 26:1491

    Article  Google Scholar 

  15. Aguilar-Santillan J (2010) Metall Mater Trans A 41:676

    Article  Google Scholar 

  16. Laurent V, Chatain D, Chatillon C, Eustathopoulos N (1988) Acta Metall 36:1797

    Article  CAS  Google Scholar 

  17. Shen P, Fujii H, Matsumoto T, Nogi K (2003) Acta Mater 51:4897

    Article  CAS  Google Scholar 

  18. Brennan JJ, Pask JA (1968) J Am Ceram Soc 51:569

    Article  CAS  Google Scholar 

  19. Weirauch DA Jr (1988) J Mater Res 3(4):729

    Article  CAS  Google Scholar 

  20. Klinter AJ, Mendoza-Suarez G, Drew RAL (2008) Mater Sci Eng, A 495:147

    Article  Google Scholar 

  21. Shen P, Fujii H, Matsumoto T, Nogi K (2004) J Am Ceram Soc 87:2151

    Article  Google Scholar 

  22. Barin I (1995) Thermochemical data of pure substances, 3rd edn. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  23. McLeod AD, Gabryel CM (1992) Metall Mater Trans A 23:1279

    Article  Google Scholar 

  24. Massalski TB (1996) Binary alloys phase diagrams. ASM International, (CD–ROM)

  25. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK (1973) Selected values of the thermodynamic properties of binary alloys. ASM, Metals Park, OH

    Google Scholar 

  26. Zhong WM, L’espérance G, Suétry M (1995) Metall Mater Trans A 26:2625

    Article  Google Scholar 

  27. Hallestedt B, Liu ZK, Agren J (1990) Mater Sci Eng, A 129:135

    Article  Google Scholar 

  28. Iida T, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford

    Google Scholar 

  29. Eustathopoulos N (1998) Acta Mater 46:2319

    CAS  Google Scholar 

  30. Zhang D (2012) Wetting of ceramics by molten Mg and effect of evaporation. PhD thesis, Jilin University, China (see the supplementary material)

  31. Shen P, Fujii H, Matsumoto T, Nogi K (2004) Acta Mater 52:887

    Article  CAS  Google Scholar 

  32. Mullins WW (1958) Acta Metall 6:414

    Article  Google Scholar 

  33. Nowak N (2010) PhD thesis, Foundry Research Institute, Krakow, Poland

  34. Lea C, Molinari C (1984) J Mater Sci 19:2336. doi:10.1007/BF01058110

    Article  CAS  Google Scholar 

  35. Keene BJ (1993) Int Mater Rev 38:157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 50871045), National Basic Research Program of China (973 program) (No. 2012CB619600), Key Project of Chinese Ministry of Education (No. 108043) and Graduate Innovation Fund of Jilin University (No. 20121086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Shen, P., Zhang, D. et al. Wetting of (0001) α-alumina single crystals by molten Mg–Al alloys in the presence of evaporation. J Mater Sci 47, 8372–8380 (2012). https://doi.org/10.1007/s10853-012-6784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6784-5

Keywords

Navigation