Journal of Materials Science

, Volume 48, Issue 2, pp 651–658 | Cite as

CdSe/Cd1−x Zn x S core/shell quantum dots with tunable emission: growth and morphology evolution

  • Ping Yang
  • Shiquan Wang
  • Masanori Ando
  • Norio Murase


We demonstrate an organic synthesis to fabricate hydrophobic core/shell CdSe/Cd1−x Zn x S quantum dots (QDs) with tunable photoluminescence (PL) between green and red at relatively low temperature using trioctylphosphine S reacted directly with cadmium and zinc acetate. A seeded growth strategy was used for preparing large CdSe cores. Large CdSe cores revealed a rod-like morphology while small one exhibited a spherical shape. Being coated with a Cd1−x Zn x S shell on spherical CdSe cores with an average size of 3.9 nm in diameter, core/shell QDs exhibited a cubic morphology (a length of 5 nm). In contrast, the core/shell QDs created using a small core (3.3 nm in diameter) show a spherical morphology. Namely, the anisotropic aggregation behavior of CdS monomers on CdSe cores occurs when the rod-like core is coated with a Cd1−x Zn x S shell. CdS interlayer plays an important role for such morphology evolution because all CdSe cores with a pure ZnS shell exhibited a spherical morphology. The PL properties of CdSe/Cd1−x Zn x S core/shell QDs depended strongly on the size and morphology of the cores. The QDs revealed a narrow and tunable PL spectrum. It is believed that this facile strategy can be extended to synthesize other core–shell QDs at low temperature.


Injection Speed CdSe Core Cadmium Acetate Dihydrate Seed Growth Approach Octadecylphosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  2. 2.
    Sitt A, Salant A, Menagen G, Banin U (2011) Nano Lett 11:2054CrossRefGoogle Scholar
  3. 3.
    Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP (2001) Science 292:2060CrossRefGoogle Scholar
  4. 4.
    Wolcott A, Fitzmorris RC, Muzaffery O, Zhang JZ (2010) Chem Mater 22:2814CrossRefGoogle Scholar
  5. 5.
    Sitt A, Della Sala F, Menagen G, Banin U (2009) Nano Lett 9:3470CrossRefGoogle Scholar
  6. 6.
    Dorfs D, Salant A, Popov I, Banin U (2008) Small 4:1319CrossRefGoogle Scholar
  7. 7.
    Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MD, Peng XG (2003) J Am Chem Soc 125:12567CrossRefGoogle Scholar
  8. 8.
    Steckel JS, Zimmer JP, Coe-Sullivan S, Stott NE, Bulovic V, Bawendi MG (2004) Angew Chem Int Ed 43:2154CrossRefGoogle Scholar
  9. 9.
    Huang GW, Chen CY, Wu KC, Ahmed MO, Chou PT (2004) J Cryst Growth 265:250CrossRefGoogle Scholar
  10. 10.
    Chou PT, Chiu YH (2004) J Phys Chem B 108:10687CrossRefGoogle Scholar
  11. 11.
    Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004) J Phys Chem B 108:18826CrossRefGoogle Scholar
  12. 12.
    Sheng Q, Kim S, Lee J, Kim SW, Jensen K, Bawendi MG (2006) Langmuir 22:3782CrossRefGoogle Scholar
  13. 13.
    Manna L, Scher EC, Alivisatos AP (2000) J Am Chem Soc 122:12700CrossRefGoogle Scholar
  14. 14.
    Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Nat Mater 2:382CrossRefGoogle Scholar
  15. 15.
    Fu AH, Gu WW, Boussert B, Koski K, Gerion D, Manna L, Le Gros M, Larabell CA, Alivisatos AP (2007) Nano Lett 7:179CrossRefGoogle Scholar
  16. 16.
    Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM, He SL, Swihart MT, Maitra A, Prasad PN (2007) Nano Lett 7:761CrossRefGoogle Scholar
  17. 17.
    Yang P, Ando M, Taguchi T, Murase N (2011) J Phys Chem C 115:14455CrossRefGoogle Scholar
  18. 18.
    Murase N, Li C (2008) J Lumin 128:1896CrossRefGoogle Scholar
  19. 19.
    Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J, Zhang H (2008) J Phys Chem C 112:8587CrossRefGoogle Scholar
  20. 20.
    Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson Q, Weller H (2004) J Phys Chem B 108:18829CrossRefGoogle Scholar
  21. 21.
    Shieh F, Saunders AE, Korgel BA (2005) J Phys Chem B 109:8538CrossRefGoogle Scholar
  22. 22.
    Deka S, Quarta A, Lupo MG, Falqui A, Boninelli S, Giannini C, Morello G, De Giorgi M, Lanzani G, Spinella C, Cingolani R, Pellegrino T, Manna L (2009) J Am Chem Soc 131:2948CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ping Yang
    • 1
    • 2
  • Shiquan Wang
    • 1
  • Masanori Ando
    • 1
  • Norio Murase
    • 1
    • 3
  1. 1.Health Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Ikeda-cityJapan
  2. 2.School of Material Science and EngineeringUniversity of JinanJinanPeople’s Republic of China
  3. 3.Health Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) TakamatsuJapan

Personalised recommendations