Skip to main content
Log in

CdSe/Cd1−x Zn x S core/shell quantum dots with tunable emission: growth and morphology evolution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We demonstrate an organic synthesis to fabricate hydrophobic core/shell CdSe/Cd1−x Zn x S quantum dots (QDs) with tunable photoluminescence (PL) between green and red at relatively low temperature using trioctylphosphine S reacted directly with cadmium and zinc acetate. A seeded growth strategy was used for preparing large CdSe cores. Large CdSe cores revealed a rod-like morphology while small one exhibited a spherical shape. Being coated with a Cd1−x Zn x S shell on spherical CdSe cores with an average size of 3.9 nm in diameter, core/shell QDs exhibited a cubic morphology (a length of 5 nm). In contrast, the core/shell QDs created using a small core (3.3 nm in diameter) show a spherical morphology. Namely, the anisotropic aggregation behavior of CdS monomers on CdSe cores occurs when the rod-like core is coated with a Cd1−x Zn x S shell. CdS interlayer plays an important role for such morphology evolution because all CdSe cores with a pure ZnS shell exhibited a spherical morphology. The PL properties of CdSe/Cd1−x Zn x S core/shell QDs depended strongly on the size and morphology of the cores. The QDs revealed a narrow and tunable PL spectrum. It is believed that this facile strategy can be extended to synthesize other core–shell QDs at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425

    Article  CAS  Google Scholar 

  2. Sitt A, Salant A, Menagen G, Banin U (2011) Nano Lett 11:2054

    Article  CAS  Google Scholar 

  3. Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP (2001) Science 292:2060

    Article  CAS  Google Scholar 

  4. Wolcott A, Fitzmorris RC, Muzaffery O, Zhang JZ (2010) Chem Mater 22:2814

    Article  CAS  Google Scholar 

  5. Sitt A, Della Sala F, Menagen G, Banin U (2009) Nano Lett 9:3470

    Article  CAS  Google Scholar 

  6. Dorfs D, Salant A, Popov I, Banin U (2008) Small 4:1319

    Article  CAS  Google Scholar 

  7. Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MD, Peng XG (2003) J Am Chem Soc 125:12567

    Article  CAS  Google Scholar 

  8. Steckel JS, Zimmer JP, Coe-Sullivan S, Stott NE, Bulovic V, Bawendi MG (2004) Angew Chem Int Ed 43:2154

    Article  CAS  Google Scholar 

  9. Huang GW, Chen CY, Wu KC, Ahmed MO, Chou PT (2004) J Cryst Growth 265:250

    Article  CAS  Google Scholar 

  10. Chou PT, Chiu YH (2004) J Phys Chem B 108:10687

    Article  Google Scholar 

  11. Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004) J Phys Chem B 108:18826

    Article  CAS  Google Scholar 

  12. Sheng Q, Kim S, Lee J, Kim SW, Jensen K, Bawendi MG (2006) Langmuir 22:3782

    Article  CAS  Google Scholar 

  13. Manna L, Scher EC, Alivisatos AP (2000) J Am Chem Soc 122:12700

    Article  CAS  Google Scholar 

  14. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Nat Mater 2:382

    Article  CAS  Google Scholar 

  15. Fu AH, Gu WW, Boussert B, Koski K, Gerion D, Manna L, Le Gros M, Larabell CA, Alivisatos AP (2007) Nano Lett 7:179

    Article  CAS  Google Scholar 

  16. Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM, He SL, Swihart MT, Maitra A, Prasad PN (2007) Nano Lett 7:761

    Article  CAS  Google Scholar 

  17. Yang P, Ando M, Taguchi T, Murase N (2011) J Phys Chem C 115:14455

    Article  CAS  Google Scholar 

  18. Murase N, Li C (2008) J Lumin 128:1896

    Article  CAS  Google Scholar 

  19. Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J, Zhang H (2008) J Phys Chem C 112:8587

    Article  CAS  Google Scholar 

  20. Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson Q, Weller H (2004) J Phys Chem B 108:18829

    Article  Google Scholar 

  21. Shieh F, Saunders AE, Korgel BA (2005) J Phys Chem B 109:8538

    Article  CAS  Google Scholar 

  22. Deka S, Quarta A, Lupo MG, Falqui A, Boninelli S, Giannini C, Morello G, De Giorgi M, Lanzani G, Spinella C, Cingolani R, Pellegrino T, Manna L (2009) J Am Chem Soc 131:2948

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Murase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Wang, S., Ando, M. et al. CdSe/Cd1−x Zn x S core/shell quantum dots with tunable emission: growth and morphology evolution. J Mater Sci 48, 651–658 (2013). https://doi.org/10.1007/s10853-012-6770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6770-y

Keywords

Navigation