Journal of Materials Science

, Volume 48, Issue 1, pp 489–501 | Cite as

Thermal and electrical stability of TaN x diffusion barriers for Cu metallization

  • Neda Dalili
  • Qi Liu
  • Douglas G. Ivey


Amorphous TaN x thin films (14 and 62 nm) were deposited by reactive sputtering on Si substrates. Crystallization and the metallurgical failure mechanism for Si/TaN x /Cu metallization stacks were investigated by resistivity measurements, X-ray diffraction analysis, detailed electron microscopy and elemental depth profiling on samples annealed in 5 %H2/95 %N2 gas for 30 min at various temperatures ranging from 300 to 900 °C. Amorphous TaN x thin films crystallized at 600 °C to hexagonal Ta2N by a polymorphous transformation. Depending on film thickness, polycrystalline Ta2N diffusion barriers were effective up to 700–800 °C. Failure occurred by diffusion of Cu to the Si/TaN x interface to form Cu3Si particles followed by outdiffusion of Si and formation of Cu3Si and TaSi2 precipitates on the outer surface. The TaN x barriers were integrated in metal–oxide–semiconductor devices (Cu/10 nm TaN x /26 nm SiO2/Si) to evaluate their electrical failure after bias-temperature-stress (BTS) testing using capacitance–voltage and current–voltage measurements. The shift in flat-band voltage and the leakage current were monitored before and after BTS. The electrical test results were compared with compositional and morphological information obtained from elemental depth profiling and electron microscopy. No evidence of Cu diffusion to SiO2 was found for capacitors with large leakage currents.


Leakage Current Density Reactive Sputtering Flat Band Voltage Electrical Failure Metal Oxide Semiconductor Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing research funding through a Strategic Project Grant and to Micralyne Inc. and Glen Fitzpatrick for supplying the metallized wafers and for valuable discussions. In addition, the Alberta Centre for Surface Engineering and Science (ACSES) is acknowledged for providing the SIMS analysis. The authors would also like to thank Dr Douglas Barlage from University of Alberta for providing access to the semiconductor analyzer.


  1. 1.
    Zant PV (2004) Microchip fabrication. McGraw-Hill, New York, p 401Google Scholar
  2. 2.
    Wong HY, Mohd Shukor NF, Amin N (2007) Microelectron J 38:777CrossRefGoogle Scholar
  3. 3.
    Istratov AA, Flink C, Hieslmair H, Weber ER, Heiser T (1998) Phys Rev Lett 81:1243CrossRefGoogle Scholar
  4. 4.
    Istratov AA, Weber ER (2002) J Electrochem Soc 149:G21CrossRefGoogle Scholar
  5. 5.
    Wang MT, Lin YC, Chen MC (1998) J Electrochem Soc 145:2538CrossRefGoogle Scholar
  6. 6.
    Burte EP, Aderhold W (1997) Solid-State Electron 41:1021CrossRefGoogle Scholar
  7. 7.
    Balluffi RW, Bkakely JM (1975) Thin Solid Films 25:363CrossRefGoogle Scholar
  8. 8.
    Shewmon P (1989) Diffusion in solids. The Minerals, Metals & Materials Society, Warrendale, PAGoogle Scholar
  9. 9.
    Wang H, Tiwari A, Zhang X (2002) Appl Phys Lett 81:1453CrossRefGoogle Scholar
  10. 10.
    Okamoto H (2008) J Phase Equilib Diffus 29:291CrossRefGoogle Scholar
  11. 11.
    Violet P, Blanquet E, Le Bacq O (2006) Microelectron Eng 83:2077CrossRefGoogle Scholar
  12. 12.
    Sun X, Kolawa E, Chen J, Reid JS, Nicolet M (1993) Thin Solid Films 236:347CrossRefGoogle Scholar
  13. 13.
    Subramanian PR, Laughlin DE (1989) Bull Alloy Phase Diagr 10:652CrossRefGoogle Scholar
  14. 14.
    Zhou J, Chen H, Li Y (2007) Trans Nonferrous Met Soc China 17:733CrossRefGoogle Scholar
  15. 15.
    Kaloyeros AE, Eisenbraun ET, Dunn K, van der Straten O (2011) Chem Eng Commun 198:1453CrossRefGoogle Scholar
  16. 16.
    Riekkinen T, Molarius J, Laurila T, Nurmela A, Suni I, Kivilahti JK (2002) Microelectron Eng 64:289CrossRefGoogle Scholar
  17. 17.
    Wang JH, Chen LJ, Lu ZC, Hsiung CS, Hsieh WY, Yew TR (2002) J Vac Sci Technol B 20:1522CrossRefGoogle Scholar
  18. 18.
    Chen GS, Lee PY, Chen ST (1999) Thin Solid Films 353:264CrossRefGoogle Scholar
  19. 19.
    Tsukimoto S, Moriyama M, Murakami M (2004) Thin Solid Films 460:222CrossRefGoogle Scholar
  20. 20.
    Stavrev M, Fischer D, Wenzel C, Drescher K, Mattern N (1997) Thin Solid Films 307:79CrossRefGoogle Scholar
  21. 21.
    Nie HB, Xu SY, Wang SJ, You LP, Yang Z, Ong CK, Li J, Liew TYF (2001) Appl Phys A Mater Sci Process 73:229CrossRefGoogle Scholar
  22. 22.
    Chung HC, Liu CP (2006) Surf Coat Technol 200:3122CrossRefGoogle Scholar
  23. 23.
    Hecker M, Fischer D, Hoffmann V (2002) Thin Solid Films 414:184CrossRefGoogle Scholar
  24. 24.
    Wu WF, Ou KL, Chou CP, Wu CC (2003) J Electrochem Soc 150:G83CrossRefGoogle Scholar
  25. 25.
    Kumar M, Rajkumar, Kumar D, Paul AK (2005) Microelectron Eng 82:53CrossRefGoogle Scholar
  26. 26.
    Wieser E, Peikert M, Wenzel C, Schreiber J, Bartha JW, Bendjus B, Melov VV, Reuther H, Mücklich A, Adolphi B, Fischer D (2002) Thin Solid Films 410:121CrossRefGoogle Scholar
  27. 27.
    Holloway K, Fryer PM, Cabral C Jr, Harper JME, Bailey PJ, Kelleher KH (1992) J Appl Phys 71:5433CrossRefGoogle Scholar
  28. 28.
    Nazon J, Beger MH, Sarradin J, Tedenac JC, Frety N (2009) Plasma Process Polym 6:S844CrossRefGoogle Scholar
  29. 29.
    Nazon J, Fraisse B, Sarradin J, Fries SG, Tedenac JC, Frety N (2008) Appl Surf Sci 254:5670CrossRefGoogle Scholar
  30. 30.
    Oku T, Kawakami E, Uekubo M, Takahiro K, Yamaguchi S, Murakami M (1996) Appl Surf Sci 99:265CrossRefGoogle Scholar
  31. 31.
    Bai P, Yang GR, You L, Lu TM, Knorr DB (1990) J Mater Res 5:989CrossRefGoogle Scholar
  32. 32.
    Nakao SI, Numata M, Ohmi T (1999) Jpn J Appl Phys, Part 1 38:2401CrossRefGoogle Scholar
  33. 33.
    Yang WL, Wu WF, Liu DG, Wu CC, Ou KL (2001) Solid-State Electron 45:149CrossRefGoogle Scholar
  34. 34.
    Kizil H, Steinbrüchel C (2004) Thin Solid Films 449:158CrossRefGoogle Scholar
  35. 35.
    Olesinski RW, Abbaschian GJ (1986) Bull Alloy Phase Diag 7:170CrossRefGoogle Scholar
  36. 36.
    Wendt H, Cerva H, Lehmann V, Pamler W (1989) J Appl Phys 65:2402CrossRefGoogle Scholar
  37. 37.
    Williams DB, Carter CB (2009) Transmission electron microscopy: A textbook for materials science, 2nd edn. Springer, New YorkGoogle Scholar
  38. 38.
    Thornton JA (1977) Annu Rev Mater Sci 7:239CrossRefGoogle Scholar
  39. 39.
    Chen Z, Misra V, Haggerty RP, Stemmer S (2004) Phys Status Solidi B 241:2253CrossRefGoogle Scholar
  40. 40.
    Kageyama M, Abe K, Harada Y, Onoda H (1998) Proc Mater Res Soc Symp 514:91CrossRefGoogle Scholar
  41. 41.
    Solberg JK (1978) Acta Crystallogr A 34:684CrossRefGoogle Scholar
  42. 42.
    Mader S (1966) In: Margolin H (ed) Recrystallization, grain growth and textures. American Society for Metals, Materials Park, p 523Google Scholar
  43. 43.
    Harper JME, Charai A, Stolt L, d’Heurle FM, Fryer PM (1990) Appl Phys Lett 56:2519CrossRefGoogle Scholar
  44. 44.
    Liu CS, Chen LJ (1995) Thin Solid Films 262:187CrossRefGoogle Scholar
  45. 45.
    Hafner J (1981) In: Gutherodt HJ, Beck H (eds) Topics in applied physics. Springer, Berlin, p 93Google Scholar
  46. 46.
    Kim KS, Joo Y, Kim KB, Kwon JY (2006) J Appl Phys 100:063317-1Google Scholar
  47. 47.
    Hu CC (2010) Modern semiconductor devices for integrated circuits. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  48. 48.
    Suwwan De Felipe T, Murarka SP, Bedell S, Lanford WA (1998) Thin Solid Films 335:49CrossRefGoogle Scholar
  49. 49.
    Fisher I, Eizenberg M (2008) Thin Solid Films 516:4111CrossRefGoogle Scholar
  50. 50.
    Loke ALS, Ryu C, Yue CP, Cho JSH, Wong SS (1996) IEEE Electron Device Lett 17:549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations