Journal of Materials Science

, Volume 48, Issue 1, pp 240–250 | Cite as

In search of materials for artificial flagella of nanoswimmers

  • Rwitajit Majumdar
  • Neha Singh
  • J. S. Rathore
  • N. N. Sharma


Localized drug delivery and nano manipulation in fluid media like blood is an important application in biomedicine. Nanoswimmers are potential drug delivery agents for inter-vascular and intra-cellular systems. The bio-mimic modeling of flagellar propulsion mechanism of nanoswimmers has been widely attempted in literature. Mathematical models of the flagellated nanoswimmers show dependence of motion on multiple parameters like geometry and material of flagella, and viscosity of the surrounding medium. The literature also provides constraints to the material property depending on the mimicked biological system. Although modeling of shape and size of nanoswimmers is widely investigated in the literature, the material selection for the flagella needs to be assessed on the criteria like biocompatibility, physical properties, and technological feasibility. The shortlisting is quintessential for attempts to engineer an artificial nanoswimmer. The present study provides a methodology for assessing the candidature of a material for the fabrication of artificial flagella, which shall have implant capabilities and be able to shortlist the potential material. Further screening criteria, based on biocompatibility and technology viability issues are also discussed.


PDMS Flexural Rigidity Flexural Modulus Sperm Number Localize Drug Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Requicha AAG (2003) Proc IEEE 91(11):1922CrossRefGoogle Scholar
  2. 2.
    Gray J, Hancock GJ (1955) J Exp Biol 32:802Google Scholar
  3. 3.
    Lauga E, Powers TR (2009) Rep Prog Phys 72(9):1CrossRefGoogle Scholar
  4. 4.
    Majumdar R, Rathore JS, Sharma NN (2009). Proceedings of 4th international conference on autonomous robots and agents, Wellington, New Zealand, 10–12 February 2009, p 79Google Scholar
  5. 5.
    Subramanian S, Rathore JS, Sharma NN (2009). Proceedings of the 4th IEEE international conference on nano/micro engineered and molecular systems, Shenzhen, China, 5–8 January 2009, p 931Google Scholar
  6. 6.
    Rathore JS, Sharma NN (2010) J Nanotechnol Eng Med Trans ASME 1(3):031001CrossRefGoogle Scholar
  7. 7.
    Deepak K, Rathore JS, Sharma NN (2011) J Nanotechnol Eng Med Trans ASME 2(1):011009Google Scholar
  8. 8.
    Lowe CP (2003) Phil Trans R Soc Lond B 358:1543CrossRefGoogle Scholar
  9. 9.
    Lagomarsino MC, Capuani F, Lowe CP (2003) J Theor Biol 224:215CrossRefGoogle Scholar
  10. 10.
    Behkam B, Sitti M (2006) J Dynam Syst Measure Contr Trans ASME 128:36CrossRefGoogle Scholar
  11. 11.
    Yu TS, Lauga E, Hosoi AE (2006) Phys Fluids 18(091701):1Google Scholar
  12. 12.
    Ghosh A, Fischer P (2009) Nano Lett 9(6):2243CrossRefGoogle Scholar
  13. 13.
    Abbott JJ, Lagomarsino MC, Zhang L, Dong, Nelson BJ (2009) Int J Robotic Res 28:1434CrossRefGoogle Scholar
  14. 14.
    Mutlu R, Alici G, Li W (2011). Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, Budapest, Hungary, 3–7 July 2011, p 440Google Scholar
  15. 15.
    Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Nature 437:862CrossRefGoogle Scholar
  16. 16.
    Faraji AH, Wipf P (2009) Bioorg Med Chem 17:2950CrossRefGoogle Scholar
  17. 17.
    Sharma NN, Mittal RK (2007). Proceedings of 4th international conference on computational intelligence, robotics and autonomous systems, Palmerston North, New Zealand, 28–30 November 2007, p 19Google Scholar
  18. 18.
    Peteu SF (2010). IEEE International semiconductor conference (CAS), 11–13 October 2010, p 179Google Scholar
  19. 19.
    Gittes F, Mickey B, Nettleton J, Howard J (1993) J Cell Biol 120(4):923CrossRefGoogle Scholar
  20. 20.
    Evans BA, Shields AR, Lloyd Carroll R, Washburn S, Falvo MR, Superfine R (2007) Nanoletters 7(5):1428CrossRefGoogle Scholar
  21. 21.
    Klein F, Richter B, Striebel T, Franz CM, Freymann G, Wegener M, Bastmeyer M (2011) Adv Mater 23:1341CrossRefGoogle Scholar
  22. 22.
    Cardarelli F (2000) Materials handbook: a concise desktop reference. Springer, LondonGoogle Scholar
  23. 23.
    Hoshikawa H, Kamiya R (1985) Biophys Chem 22:159CrossRefGoogle Scholar
  24. 24.
    Helmus MN, Gibbons DF, Cebon D (2008) J Toxicol Pathol 36(1):70CrossRefGoogle Scholar
  25. 25.
    Seyfert UT, Biehl V, Schenk J (2002) Biomol Eng 19:91CrossRefGoogle Scholar
  26. 26.
    Teo WE, Ramakrishna S (2006) Nanotechnology 17:89CrossRefGoogle Scholar
  27. 27.
    Teo WE, Inai R, Ramakrishna S (2011) Sci Technol Adv Mater 12(013002):1Google Scholar
  28. 28.
    Belanger MC, Marois Y (2001) J Biomed Mater Res 58(5):467CrossRefGoogle Scholar
  29. 29.
    Rein DM, Shavit-hadar L, Khalfin RL, Cohen Y, Shuster K, Zussman E (2007) J Polym Sci B Polym Phys 45:766CrossRefGoogle Scholar
  30. 30.
    Risbud MV, Hambir S, Jog J, Bhonde RR (2001) J Biomater Sci Polym Ed 12(11):1177CrossRefGoogle Scholar
  31. 31.
    Ainslie KM, Bachelder EM, Borkar S, Zahr AS, Sen A, Badding JV, Pishko MV (2007) Langmuir 23(2):747CrossRefGoogle Scholar
  32. 32.
    Borkar S, Gu B, Dirmyer M, Delicado R, Sen A, Jackson BR, Badding JV (2006) Polymer 47(25):8337CrossRefGoogle Scholar
  33. 33.
    Fundueanu G, Constantin M, Esposito E, Cortesi R, Nastruzzi C, Menegatti E (2005) Biomaterials 26:4337CrossRefGoogle Scholar
  34. 34.
    Nilay S, Patil UA, Dinesh BM, Desai BG (2008) East Cent Afr J Pharm Sci 11(1):9Google Scholar
  35. 35.
    Miyazaki Y, Ogihara K, Yakou S, Nagai T, Takayamab K (2003) Int J Pharm 258:21CrossRefGoogle Scholar
  36. 36.
    Li M, Xiao R, Sun G (2012) J Appl Polym Sci 124(1):28CrossRefGoogle Scholar
  37. 37.
    Chen X et al (2006) Macromolecules 39:5427CrossRefGoogle Scholar
  38. 38.
    Gomes GS et al (2007) Mater Res 10(4):469CrossRefGoogle Scholar
  39. 39.
    Xiao R, Li M, Sun G (2011). Society for plastic engineers, Plastic Research Online.
  40. 40.
    Ramos CT, Thapa R, Lozano K, Chipara M, Ferrer D, Gutierrez JJ (2011) J Nanosci Nanotechnol 11(5):3965CrossRefGoogle Scholar
  41. 41.
    Contreras-García A, Bucio E, Concheiro A, Alvarez-Lorenzo C (2011) J Bioact Compat Polym 26(4):405CrossRefGoogle Scholar
  42. 42.
    Wang D, Sun G, Chiou BS, Hinestroza JP (2007) Polym Eng Sci 47(11):1865CrossRefGoogle Scholar
  43. 43.
    Risbud MV, Bhonde RR (2001) J Biomater Sci Polym Ed 12(1):125CrossRefGoogle Scholar
  44. 44.
    Bagheri H, Aghakhani A, Baghernejad M, Akbarinejad A (2010) Anal Chim Acta 716:34CrossRefGoogle Scholar
  45. 45.
    Rhodes NP, Kumary TV, Williams DF (1996) Biomaterials 17(20):1995CrossRefGoogle Scholar
  46. 46.
    Balakrishnan B, Jayakrishna A (2000) Trend Biomater Artif Organs 18(2):230Google Scholar
  47. 47.
    Lee KH, Kim HY, La YM, Lee DR, Sung NH (2002) J Polym Sci B Polym Phys 40:2259CrossRefGoogle Scholar
  48. 48.
    Martín J, Maiz J, Sacristan J, Mijangos C (2012) Polymer 53:1149CrossRefGoogle Scholar
  49. 49.
    Laroche G, Marois Y, Guidoin R, King MW, Martin L, How T, Douvill Y (1995) J Biomed Mater Res 29(12):1525CrossRefGoogle Scholar
  50. 50.
    Chang Y, Shih YJ, Ko CY, Jhong JF, Liu YL, Wei TC (2011) Langmuir 27:5445CrossRefGoogle Scholar
  51. 51.
    Choi SW, Jo SM, Lee WS, Kim YR (2003) Adv Mater 15(23):2027CrossRefGoogle Scholar
  52. 52.
    Wortman RS, Merritt K, Brown SA (1983) Biomater Med Devices Artif Organs 11(1):103Google Scholar
  53. 53.
    Molugu S, Qu L, Lin Y, Sun YP, Tzeng TR, Stutzenberger FJ, Latour RA (2006) J Biomed Nanotechnol 2(1):1CrossRefGoogle Scholar
  54. 54.
    Anderson DG et al (2010) Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models. PLoS ONE 5(4): e10032. Available: Accessed 27 Feb 2012
  55. 55.
    McCarthy JE, Prina-Mello A, Rakovich T, Volkov Y, Gun’ko YK (2011) J Mater Chem 21(37):14219CrossRefGoogle Scholar
  56. 56.
    Schohn DC, Jahn HA, Eber M, Hauptmann G (1986) Blood Purif 4(1–3):102CrossRefGoogle Scholar
  57. 57.
    Yoon H, Deshpande DC, Ramachandran V, Varadan VK (2008) Nanotechnology 19(2):025304CrossRefGoogle Scholar
  58. 58.
    Liao CC, Wang CC, Shih KC, Chen CY (2011) European Polym J 47(5):911CrossRefGoogle Scholar
  59. 59.
    Thomson LA, Law FC, James KH, Matthew CA, Rushton N (1992) Biomaterials 13(12):811CrossRefGoogle Scholar
  60. 60.
    Czaplewski D, Kameoka J, Craighead HG (2003) J Vac Sci Technol B 21(6):2994CrossRefGoogle Scholar
  61. 61.
    Lee KJ, Oh JH, Kim Y, Jang J (2006) Adv Mater 18:2216CrossRefGoogle Scholar
  62. 62.
    Kong H, Jang J (2008) Langmuir 24:2051CrossRefGoogle Scholar
  63. 63.
    Vitral RWF, Ferreira AP, De Souza MA, Fraga MR, Vitral JCA (2010) Am J Orthod Dentofacial Orthop 137(5):665CrossRefGoogle Scholar
  64. 64.
    Kongkhlang T, Kotaki M, Kousaka Y, Umemura T, Nakaya D, Chirachanchai S (2008) Macromolecules 41:4746CrossRefGoogle Scholar
  65. 65.
    Sang Y, Li F, Gu Q, Liang C, Chena J (2008) Desalination 223:349CrossRefGoogle Scholar
  66. 66.
    Khang G, Jeong BJ, Lee HB, Park JB (1995) Bio-Med Mater Eng 5(4):259Google Scholar
  67. 67.
    Zhibin H, Gang L, Peng L, Yunhua YU, Haiyang L, Xiaolong J, Xiaoping Y (2008). Acta Materiae Compositae Sinica 5. doi: CNKI:SUN:FUHE.0.2008-05-006
  68. 68.
    Imai Y, Watanabe A, Masuhara E, Imai Y (1983) J Biomed Mater Res 17(6):905CrossRefGoogle Scholar
  69. 69.
    Lee SH, Kim SY, Youn JR, Seong DG, Jee SY, Choi JI, Lee JR (2010) Polym Int 59(2):212CrossRefGoogle Scholar
  70. 70.
    De Brito AS, De Queiroz AA, Higa OZ (2003) Artif Organs 27(5):444CrossRefGoogle Scholar
  71. 71.
    Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Biomaterials 26(15):2527CrossRefGoogle Scholar
  72. 72.
    Richardson RR Jr, Miller JA, Reichert WM (1993) Biomaterials 14(8):627CrossRefGoogle Scholar
  73. 73.
    Fukushima S, Karube Y, Kawakami H (2010) Polym J 42:514CrossRefGoogle Scholar
  74. 74.
    Zhou HY, Zhou DJ, Zhang WF, Jiang LJ, Li JB, Chen XG (2011) Front Mater Sci 5(4):367CrossRefGoogle Scholar
  75. 75.
    Zhang L, Menkhaus TJ, Fong H (2008) J Membr Sci 319(1–2):176CrossRefGoogle Scholar
  76. 76.
    Yumin Q, Yun H, Chunxiang C, Shuangjin L, Huifen W (2007) Front Mater Sci Chin 1(3):252CrossRefGoogle Scholar
  77. 77.
    Oh SH, Choi SY, Lee YK, Kim KN (2004) J Mater Sci Mater Med 15:25CrossRefGoogle Scholar
  78. 78.
    Zhang X, Fedkiw PS, Khan SA (2012). U.S. Patents 2012/0034512 A1Google Scholar
  79. 79.
    He Y, Zhang T, Zheng W, Wang R, Liu X, Xia Y, Zhao J (2010) Sensor Actuators B 146:98CrossRefGoogle Scholar
  80. 80.
    Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011) Carbon 49(3):986CrossRefGoogle Scholar
  81. 81.
    Jang JH, Han KS (2007) J Compos Mater 41(12):1431CrossRefGoogle Scholar
  82. 82.
    Mao C, Qiu Y, Sang H, Zhu HMA, Shen J, Lin S (2004) Adv Colloid Interface Sci 110(1–2):5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rwitajit Majumdar
    • 1
  • Neha Singh
    • 1
  • J. S. Rathore
    • 1
  • N. N. Sharma
    • 1
  1. 1.Department of Mechanical EngineeringBirla Institute of Technology and SciencePilaniIndia

Personalised recommendations