Journal of Materials Science

, Volume 48, Issue 1, pp 232–239 | Cite as

Contact morphology and constitutive equation in evaluating tensile properties of austenitic stainless steels through instrumented spherical indentation

  • Young-Cheon Kim
  • Seung-Kyun Kang
  • Ju-Young Kim
  • Dongil Kwon


We evaluate representative stress and strain of austenitic stainless steels using instrumented indentation tests with a spherical indenter by taking into account the real contact depth and effective radius. We investigate the relation between material pileup underneath the spherical indenter and the strain-hardening exponent in uniaxial tensile tests for these steels. We evaluate the suitability of three constitutive equations, the Hollomon, Ludwigson, and Swift equations, for describing linear-type strain-hardening of austenitic stainless steels. Using the real contact depth and effective radii developed for the austenitic stainless steels, we find good agreement between representative stress and strain in instrumented indentation and uniaxial tensile tests.


Austenitic Stainless Steel Indentation Depth Effective Radius Uniaxial Tensile Test Representative Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (0417-20110083).


  1. 1.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  2. 2.
    Kim JY, Lee KW, Lee JS, Kwon D (2006) Surf Coat Technol 201:4278CrossRefGoogle Scholar
  3. 3.
    Bouzakis KD, Michailidis N (2004) Thin Solid Films 469:227CrossRefGoogle Scholar
  4. 4.
    Tyulyukovskiy E, Huber N (2006) J Mater Res 21:664CrossRefGoogle Scholar
  5. 5.
    Klötzer D, Ullner C, Tyulyukovskiy E, Huber N (2006) J Mater Res 21:677CrossRefGoogle Scholar
  6. 6.
    Lee YH, Kim Y, Park JS, Lee HM (2010) Nanosci Nanotechno Lett 2:337CrossRefGoogle Scholar
  7. 7.
    Choi IC, Yoo BG, Kim YJ, Seok MY, Wang YM, Jang JI (2011) Scripta Mater 65:300CrossRefGoogle Scholar
  8. 8.
    Lee YH, Park JS, Lee HM, Nahm SH (2010) Int J Mod Phys B 24:2453CrossRefGoogle Scholar
  9. 9.
    Lee KW, Kim KH, Kim JY, Kwon D (2008) J Phys D Appl Phys 41:074014CrossRefGoogle Scholar
  10. 10.
    Jang JI (2009) J Ceram Process Res 10:391Google Scholar
  11. 11.
    Tabor D (1951) Hardness of metals. Clarendon Press, OxfordGoogle Scholar
  12. 12.
    Ahn JH, Kwon D (2001) J Mater Res 16:3170CrossRefGoogle Scholar
  13. 13.
    Kim SH, Lee BW, Choi Y, Kwon D (2006) Mater Sci Eng A Struct 415:59CrossRefGoogle Scholar
  14. 14.
    Kang SK, Kim JY, Park CP, Kim HU, Kwon D (2010) J Mater Res 25:337CrossRefGoogle Scholar
  15. 15.
    Malzbender J, de With G (2002) J Mater Res 17:502CrossRefGoogle Scholar
  16. 16.
    Cheng YT, Cheng CM (1999) Int J Solids Struct 36:1231CrossRefGoogle Scholar
  17. 17.
    Choi Y, Lee HS, Kwon D (2004) J Mater Res 19:3307CrossRefGoogle Scholar
  18. 18.
    Alcalà J, Barone AC, Anglada M (2000) Acta Mater 48:3451CrossRefGoogle Scholar
  19. 19.
    Bartier O, Hernot X, Mauvoisin G (2010) Mech Mater 42:640CrossRefGoogle Scholar
  20. 20.
    Kang SK, Kim JY, Kang I, Kwon D (2009) J Mater Res 24:2965CrossRefGoogle Scholar
  21. 21.
    ASTM E8-04 (2004) Standard test methods for tension testing of metallic materials. ASTM International, West ConshohockenGoogle Scholar
  22. 22.
    Hollomon JH (1945) Trans Metall Soc AIME 162:268Google Scholar
  23. 23.
    Kleemola HJ, Nieminen MA (1974) Metall Mater Trans 5:1863CrossRefGoogle Scholar
  24. 24.
    Ludwigson DC (1971) Metall Mater Trans 2:2825CrossRefGoogle Scholar
  25. 25.
    Swift HW (1952) J Mech Phys Solids 1:1CrossRefGoogle Scholar
  26. 26.
    Samuel KG, Rodriguez P (2005) J Mater Sci 40:5727. doi: 10.1007/s10853-005-1078-9 CrossRefGoogle Scholar
  27. 27.
    Yoo JD, Park KT (2008) Mater Sci Eng A 496:417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Young-Cheon Kim
    • 1
  • Seung-Kyun Kang
    • 1
  • Ju-Young Kim
    • 2
  • Dongil Kwon
    • 1
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.School of Mechanical and Advanced Materials EngineeringUNISTUlsanKorea

Personalised recommendations