Advertisement

Journal of Materials Science

, Volume 48, Issue 1, pp 192–200 | Cite as

Theoretical assessment of the nonlinear optical properties of substituted oligoacenes

  • Marconi B. S. Costa
  • Ana E. de A. Machado
  • Antonio C. Pavão
Article

Abstract

The β and γ nonlinear optical coefficients of substituted oligoacenes (1–10 rings) with the donors (D) groups –CH3, –CH2CH3, –CH2CH2CH3, –CH2CH2CH2CH3, –C(CH3)3, –CH3CHN(CH3)2, –N(CH3)2, –OCH3, –OCH2CH3, –OCH2CH2CH3, –OCH2CH2CH2CH3, –OC(CH3)3, and –OCHCH3N(CH3)2 and the acceptor (R) group –CHC(CN)2 is calculated by the AM1/TDHF method. A partial least squares regression analysis of electronic and structural parameters is performed to investigate their correlation with β and γ hyperpolarizabilities. It is found that the dipole moment, the HOMO–LUMO energy gap, the ionization potential, the number of π-electrons, and the number of rings in the bridge are parameters that significantly affect β and γ magnitudes. The dipole moment and the number of π-electrons are positively correlated with β values, while the HOMO–LUMO energy gap and the ionization potential are negatively correlated. Calculations indicate that the hyperpolarizabilities increase with the number of rings in the bridge and that the dimethylamine/dicyanoethenyl pair leads to the highest hyperpolarizabilities values. Optimization of β and γ is obtained through several substitution patterns of the oligoacenes. The present methodology shows that more extended systems containing two D/R pairs have high values of β and γ coefficients, which indicates that these systems can be employed in manufacturing nonlinear optics devices.

Keywords

Dipole Moment Partial Little Square Nonlinear Response Pentacene Substitution Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
β

First hyperpolarizability

γ

Second hyperpolarizability

HOMO

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital

ΔHL

HOMO–LUMO energy gap

μ

Ground state dipole moment

IP

Ionization potential

AM1

Austin Model 1

TDHF

Time-dependent Hartree–Fock

Notes

Acknowledgements

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for their financial support.

References

  1. 1.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195CrossRefGoogle Scholar
  2. 2.
    Facchetti A, Annoni E, Beverina L, Morone M, Zhu P, Marks TJ, Pagani GA (2004) Nat Mater 3:910CrossRefGoogle Scholar
  3. 3.
    Machado AE, Gama AAS (2003) J Mol Struct (THEOCHEM) 21:620Google Scholar
  4. 4.
    Brédas JL, Adant C, Tackx P, Persoons A (1994) Chem Rev 94:243CrossRefGoogle Scholar
  5. 5.
    Stegeman GI, Wright EM (1990) Opt Quant Electron 22:95CrossRefGoogle Scholar
  6. 6.
    Stegeman GI, Wright EM (1990) Org Mater Nonlinear Optics II(1991):311Google Scholar
  7. 7.
    Shen YR (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  8. 8.
    Resende SM (1996) A Física de Materiais e Dispositivos Eletrônicos, Ed. of UFPE: RecifeGoogle Scholar
  9. 9.
    Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices, V. 9: nonlinear optical materials. Academic Press, San DiegoGoogle Scholar
  10. 10.
    Castellano O, Giffard M, Chrysos M, Sylla M, Nguyen-Phu X, Hinchliffe A, Soscun H (2005) J Mol Structure (THEOCHEM) 716:1CrossRefGoogle Scholar
  11. 11.
    Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H (1996) Chem Phys Lett 1:253Google Scholar
  12. 12.
    Reis H, Papadopoulos MG, Calaminici P, Jug K, Köster AM (2000) Chem Phys 359:261Google Scholar
  13. 13.
    Santos MC (2006) Phys Rev B 74:045426CrossRefGoogle Scholar
  14. 14.
    Halik M et al (2004) Nature 431:963CrossRefGoogle Scholar
  15. 15.
    Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891CrossRefGoogle Scholar
  16. 16.
    Zhang L, Taguchi D, Masada H, Manaka T, Iwamoto M (2012) Jpn J Appl Phys 51:02BK08CrossRefGoogle Scholar
  17. 17.
    The Unscrambler 9.6. CAMO Software AS, Nedre Volgate 8, N-0158 OSLO, NorwayGoogle Scholar
  18. 18.
    Machado AE, Neto BB, Gama AAS (2004) J Comp Meth Sci Eng 4:267Google Scholar
  19. 19.
    Costa MBS, Machado AE, Neto BB (2007) Comp Lett 3:267CrossRefGoogle Scholar
  20. 20.
    Machado AE, Gama AAS, Neto BB (2011) Chem Phys 388:19CrossRefGoogle Scholar
  21. 21.
    Karna SP, Dupuis M (1991) J Comp Chem 12:487CrossRefGoogle Scholar
  22. 22.
    Sekino H, Bartlett RJ (1986) J Chem Phys 85:976CrossRefGoogle Scholar
  23. 23.
    Stewart JJP (1999) MOPAC2000 Manual. Fujitsu Limited, TokyoGoogle Scholar
  24. 24.
    Moura GLC, Simas AM, Miller J (1996) Chem Phys Lett 257:639CrossRefGoogle Scholar
  25. 25.
    Machado AE (2001) Hiperpolarizabilidades semi-empíricas de sistemas orgânicos doador-receptor. PhD Thesis, Universidade Federal de Pernambuco, BrazilGoogle Scholar
  26. 26.
    Machado AE, da Gama AAS (2005) Intern J Quantum Chem 103:625CrossRefGoogle Scholar
  27. 27.
    Machado AE, da Gama AAS (2008) J Braz Chem Soc 19:1381CrossRefGoogle Scholar
  28. 28.
    Brennand RA, Machado AE (2010) J Comput Meth Sci Eng 10:205Google Scholar
  29. 29.
    Lu Y, Lee S (1992) Int J Quantum Chem 44:773CrossRefGoogle Scholar
  30. 30.
    Lee S, Yang K, Sheu J, Lu Y (1995) Int J Quantum Chem 29:509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marconi B. S. Costa
    • 1
  • Ana E. de A. Machado
    • 1
  • Antonio C. Pavão
    • 1
  1. 1.Departamento de Química FundamentalUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations