Skip to main content
Log in

Theoretical assessment of the nonlinear optical properties of substituted oligoacenes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The β and γ nonlinear optical coefficients of substituted oligoacenes (1–10 rings) with the donors (D) groups –CH3, –CH2CH3, –CH2CH2CH3, –CH2CH2CH2CH3, –C(CH3)3, –CH3CHN(CH3)2, –N(CH3)2, –OCH3, –OCH2CH3, –OCH2CH2CH3, –OCH2CH2CH2CH3, –OC(CH3)3, and –OCHCH3N(CH3)2 and the acceptor (R) group –CHC(CN)2 is calculated by the AM1/TDHF method. A partial least squares regression analysis of electronic and structural parameters is performed to investigate their correlation with β and γ hyperpolarizabilities. It is found that the dipole moment, the HOMO–LUMO energy gap, the ionization potential, the number of π-electrons, and the number of rings in the bridge are parameters that significantly affect β and γ magnitudes. The dipole moment and the number of π-electrons are positively correlated with β values, while the HOMO–LUMO energy gap and the ionization potential are negatively correlated. Calculations indicate that the hyperpolarizabilities increase with the number of rings in the bridge and that the dimethylamine/dicyanoethenyl pair leads to the highest hyperpolarizabilities values. Optimization of β and γ is obtained through several substitution patterns of the oligoacenes. The present methodology shows that more extended systems containing two D/R pairs have high values of β and γ coefficients, which indicates that these systems can be employed in manufacturing nonlinear optics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

β:

First hyperpolarizability

γ:

Second hyperpolarizability

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

ΔHL :

HOMO–LUMO energy gap

μ:

Ground state dipole moment

IP:

Ionization potential

AM1:

Austin Model 1

TDHF:

Time-dependent Hartree–Fock

References

  1. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  2. Facchetti A, Annoni E, Beverina L, Morone M, Zhu P, Marks TJ, Pagani GA (2004) Nat Mater 3:910

    Article  CAS  Google Scholar 

  3. Machado AE, Gama AAS (2003) J Mol Struct (THEOCHEM) 21:620

    Google Scholar 

  4. Brédas JL, Adant C, Tackx P, Persoons A (1994) Chem Rev 94:243

    Article  Google Scholar 

  5. Stegeman GI, Wright EM (1990) Opt Quant Electron 22:95

    Article  CAS  Google Scholar 

  6. Stegeman GI, Wright EM (1990) Org Mater Nonlinear Optics II(1991):311

    Google Scholar 

  7. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  8. Resende SM (1996) A Física de Materiais e Dispositivos Eletrônicos, Ed. of UFPE: Recife

  9. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices, V. 9: nonlinear optical materials. Academic Press, San Diego

    Google Scholar 

  10. Castellano O, Giffard M, Chrysos M, Sylla M, Nguyen-Phu X, Hinchliffe A, Soscun H (2005) J Mol Structure (THEOCHEM) 716:1

    Article  CAS  Google Scholar 

  11. Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H (1996) Chem Phys Lett 1:253

    Google Scholar 

  12. Reis H, Papadopoulos MG, Calaminici P, Jug K, Köster AM (2000) Chem Phys 359:261

    Google Scholar 

  13. Santos MC (2006) Phys Rev B 74:045426

    Article  Google Scholar 

  14. Halik M et al (2004) Nature 431:963

    Article  CAS  Google Scholar 

  15. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891

    Article  CAS  Google Scholar 

  16. Zhang L, Taguchi D, Masada H, Manaka T, Iwamoto M (2012) Jpn J Appl Phys 51:02BK08

    Article  Google Scholar 

  17. The Unscrambler 9.6. CAMO Software AS, Nedre Volgate 8, N-0158 OSLO, Norway

  18. Machado AE, Neto BB, Gama AAS (2004) J Comp Meth Sci Eng 4:267

    CAS  Google Scholar 

  19. Costa MBS, Machado AE, Neto BB (2007) Comp Lett 3:267

    Article  CAS  Google Scholar 

  20. Machado AE, Gama AAS, Neto BB (2011) Chem Phys 388:19

    Article  CAS  Google Scholar 

  21. Karna SP, Dupuis M (1991) J Comp Chem 12:487

    Article  CAS  Google Scholar 

  22. Sekino H, Bartlett RJ (1986) J Chem Phys 85:976

    Article  CAS  Google Scholar 

  23. Stewart JJP (1999) MOPAC2000 Manual. Fujitsu Limited, Tokyo

    Google Scholar 

  24. Moura GLC, Simas AM, Miller J (1996) Chem Phys Lett 257:639

    Article  CAS  Google Scholar 

  25. Machado AE (2001) Hiperpolarizabilidades semi-empíricas de sistemas orgânicos doador-receptor. PhD Thesis, Universidade Federal de Pernambuco, Brazil

  26. Machado AE, da Gama AAS (2005) Intern J Quantum Chem 103:625

    Article  CAS  Google Scholar 

  27. Machado AE, da Gama AAS (2008) J Braz Chem Soc 19:1381

    Article  CAS  Google Scholar 

  28. Brennand RA, Machado AE (2010) J Comput Meth Sci Eng 10:205

    Google Scholar 

  29. Lu Y, Lee S (1992) Int J Quantum Chem 44:773

    Article  CAS  Google Scholar 

  30. Lee S, Yang K, Sheu J, Lu Y (1995) Int J Quantum Chem 29:509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Pavão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.B.S., de A. Machado, A.E. & Pavão, A.C. Theoretical assessment of the nonlinear optical properties of substituted oligoacenes. J Mater Sci 48, 192–200 (2013). https://doi.org/10.1007/s10853-012-6728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6728-0

Keywords

Navigation