Advertisement

Journal of Materials Science

, Volume 47, Issue 23, pp 8153–8166 | Cite as

Effect of mixing rate on the morphology of primary Al phase in the controlled diffusion solidification (CDS) process

  • Abbas A. Khalaf
  • Sumanth Shankar
Article

Abstract

Controlled diffusion solidification is a novel and promising process wherein near-net-shaped cast product of a desired Al wrought alloy is obtained by mixing two precursor alloys at specific individual composition, mass, and temperature each to obtain a non-dendritic morphology of the primary Al phase in the solidified microstructure. This study is devoted to quantify the effect of the rate of mixing of the two precursor alloys on the morphology of the primary Al phase in the cast component. The results show that the lower mixing rate with a higher mixing velocity is more favorable for the CDS process.

Keywords

Nucleation Event Resultant Mixture Superheat Temperature Precursor Alloy Control Diffusion Solidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

Alloy1

Precursor alloy with higher thermal mass

Alloy2

Precursor alloy with lower thermal mass

Alloy3

Desired resultant alloy

C

Specific heat

Co

Average concentration of Alloy3

kL

Thermal conductivity of liquid pure Al

m1

Mass of Alloy1

m2

Mass of Alloy2

mr

Mass ratio (m1:m2)

mT

Total mass of Alloy3

T1

Initial temperature of liquid Alloy1

T2

Initial temperature of liquid Alloy2

T3

Initial temperature of liquid Alloy3

TL1

Liquidus temperature of Alloy1

TL2

Liquidus temperature of Alloy2

TL3

Liquidus temperature of Alloy3

T

Undercooling below the liquidus temperature of the respective alloy

t

Time

D

Solute diffusion coefficient

L

Characteristic length

u

Velocity

ρ

Density

μ

Dynamic viscosity

α

Thermal diffusivity

σ

Surface tension

(NPe)T

Peclet number for thermal field

(NPe)S

Peclet number for solute field

NWe

Weber number

References

  1. 1.
    Saha D, Shankar S, Apelian D, Makhlouf MM (2004) Metall Mater Trans A 35A:2174CrossRefGoogle Scholar
  2. 2.
    Goetzl CG, Ellis JL (1952) US Patent 2,611,443, September 30, 1952Google Scholar
  3. 3.
    Langford G, Cunningham RE (1978) Metall Trans B 9B:5CrossRefGoogle Scholar
  4. 4.
    Apelian D, Langford G (1980) J Met 32(9):28Google Scholar
  5. 5.
    Wang J et al. (2002) Mater Sci Eng A338Google Scholar
  6. 6.
    Ashtari P, Birsan G, Khalaf A, Shankar S (2011) Int J Met Cast 2011(Spring):43Google Scholar
  7. 7.
    Symeonidis K (2009) PhD thesis, Worcester Polytechnic Institute, AprilGoogle Scholar
  8. 8.
    Saha D, Shankar S, Apelian D, Makhlouf M (2004) In: Crepeau P, Tiryakioglu M (eds) Proceedings of the John Campbell Honorary symposium. The Minerals, Metals & Materials Society (TMS), WarrendaleGoogle Scholar
  9. 9.
    Birsan G (2009) Master Thesis, Mechanical Engineering, McMaster UniversityGoogle Scholar
  10. 10.
    Ashtari P, Birsan G, Shankar S (2009) In: Campbell J, Crepeau PN, Tiryakioglu M (eds) Shape casting: the 3rd international symposium. The Minerals, Metals and Materials Society (TMS), Warrendale, pp 223–230Google Scholar
  11. 11.
    Khalaf AA, Ashtari P, Shankar S (2009) In: Campbell J, Crepeau PN, Tiryakioglu M (eds) Shaped casting: the 3rd international symposium. The Minerals, Metals and Materials Society (TMS), Warrendale, pp. 215–222Google Scholar
  12. 12.
    Khalaf A, Ashtari P, Shankar S (2009) Metall Mater Trans B 40B:843CrossRefGoogle Scholar
  13. 13.
    Khalaf AA (2010) PhD Thesis, McMaster University, Hamilton, ON, Canada, pp. 72–90Google Scholar
  14. 14.
    Vishan V, Narlikar AV (1976) Mater Res Bull II:I257Google Scholar
  15. 15.
    ASM Handbook Committee (1973) Metals handbook, metallographic, structure and phase diagram, vol 8, 8th edn. American Society for Metals, Materials Park, OHGoogle Scholar
  16. 16.
    Kirkwood DH et al (2009) Springer Ser Mater Sci 124:22Google Scholar
  17. 17.
    Khalaf AA, Shankar S (2011) Metal Mater Trans A 42A:2456CrossRefGoogle Scholar
  18. 18.
    Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering, 6th edn. Butterworth-Heinemann, Oxford, p 41Google Scholar
  19. 19.
    Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Kurz W, Fisher DJ (1989) Fundamentals of solidification, 3rd edn. Trans Tech Publications, EnfieldGoogle Scholar
  21. 21.
    Apelian D, Makhlouf MM, Saha D (2006) Mater Sci Forum 519–521:1771CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Light Metal Casting Research Centre (LMCRC)McMaster UniversityHamiltonCanada

Personalised recommendations