Skip to main content
Log in

Effect of mixing rate on the morphology of primary Al phase in the controlled diffusion solidification (CDS) process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlled diffusion solidification is a novel and promising process wherein near-net-shaped cast product of a desired Al wrought alloy is obtained by mixing two precursor alloys at specific individual composition, mass, and temperature each to obtain a non-dendritic morphology of the primary Al phase in the solidified microstructure. This study is devoted to quantify the effect of the rate of mixing of the two precursor alloys on the morphology of the primary Al phase in the cast component. The results show that the lower mixing rate with a higher mixing velocity is more favorable for the CDS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. SCXI-1100 is a trademark of National Instruments, Vaudreuil-Dorion, PQ, Canada.

  2. Eberbach Corporation, ANN Michigan, USA.

  3. JEOL, INCA Oxford, England.

  4. ImageJ, Image processing and Analysis in Java, 1.42q Java 1.6.0 (32 bit).

Abbreviations

Alloy1:

Precursor alloy with higher thermal mass

Alloy2:

Precursor alloy with lower thermal mass

Alloy3:

Desired resultant alloy

C :

Specific heat

C o :

Average concentration of Alloy3

k L :

Thermal conductivity of liquid pure Al

m 1 :

Mass of Alloy1

m 2 :

Mass of Alloy2

mr:

Mass ratio (m1:m2)

m T :

Total mass of Alloy3

T 1 :

Initial temperature of liquid Alloy1

T 2 :

Initial temperature of liquid Alloy2

T 3 :

Initial temperature of liquid Alloy3

T L1 :

Liquidus temperature of Alloy1

T L2 :

Liquidus temperature of Alloy2

T L3 :

Liquidus temperature of Alloy3

T :

Undercooling below the liquidus temperature of the respective alloy

t :

Time

D :

Solute diffusion coefficient

L :

Characteristic length

u :

Velocity

ρ :

Density

μ :

Dynamic viscosity

α:

Thermal diffusivity

σ :

Surface tension

(N Pe)T :

Peclet number for thermal field

(N Pe)S :

Peclet number for solute field

N We :

Weber number

References

  1. Saha D, Shankar S, Apelian D, Makhlouf MM (2004) Metall Mater Trans A 35A:2174

    Article  CAS  Google Scholar 

  2. Goetzl CG, Ellis JL (1952) US Patent 2,611,443, September 30, 1952

  3. Langford G, Cunningham RE (1978) Metall Trans B 9B:5

    Article  CAS  Google Scholar 

  4. Apelian D, Langford G (1980) J Met 32(9):28

    Google Scholar 

  5. Wang J et al. (2002) Mater Sci Eng A338

  6. Ashtari P, Birsan G, Khalaf A, Shankar S (2011) Int J Met Cast 2011(Spring):43

  7. Symeonidis K (2009) PhD thesis, Worcester Polytechnic Institute, April

  8. Saha D, Shankar S, Apelian D, Makhlouf M (2004) In: Crepeau P, Tiryakioglu M (eds) Proceedings of the John Campbell Honorary symposium. The Minerals, Metals & Materials Society (TMS), Warrendale

    Google Scholar 

  9. Birsan G (2009) Master Thesis, Mechanical Engineering, McMaster University

  10. Ashtari P, Birsan G, Shankar S (2009) In: Campbell J, Crepeau PN, Tiryakioglu M (eds) Shape casting: the 3rd international symposium. The Minerals, Metals and Materials Society (TMS), Warrendale, pp 223–230

  11. Khalaf AA, Ashtari P, Shankar S (2009) In: Campbell J, Crepeau PN, Tiryakioglu M (eds) Shaped casting: the 3rd international symposium. The Minerals, Metals and Materials Society (TMS), Warrendale, pp. 215–222

    Google Scholar 

  12. Khalaf A, Ashtari P, Shankar S (2009) Metall Mater Trans B 40B:843

    Article  CAS  Google Scholar 

  13. Khalaf AA (2010) PhD Thesis, McMaster University, Hamilton, ON, Canada, pp. 72–90

  14. Vishan V, Narlikar AV (1976) Mater Res Bull II:I257

    Google Scholar 

  15. ASM Handbook Committee (1973) Metals handbook, metallographic, structure and phase diagram, vol 8, 8th edn. American Society for Metals, Materials Park, OH

    Google Scholar 

  16. Kirkwood DH et al (2009) Springer Ser Mater Sci 124:22

    Google Scholar 

  17. Khalaf AA, Shankar S (2011) Metal Mater Trans A 42A:2456

    Article  Google Scholar 

  18. Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering, 6th edn. Butterworth-Heinemann, Oxford, p 41

    Google Scholar 

  19. Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  20. Kurz W, Fisher DJ (1989) Fundamentals of solidification, 3rd edn. Trans Tech Publications, Enfield

    Google Scholar 

  21. Apelian D, Makhlouf MM, Saha D (2006) Mater Sci Forum 519–521:1771

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanth Shankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalaf, A.A., Shankar, S. Effect of mixing rate on the morphology of primary Al phase in the controlled diffusion solidification (CDS) process. J Mater Sci 47, 8153–8166 (2012). https://doi.org/10.1007/s10853-012-6711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6711-9

Keywords

Navigation