Journal of Materials Science

, Volume 47, Issue 23, pp 8061–8066 | Cite as

Zr1−x Yb x WMoO8−x/2 (x = 0, 0.04) ceramics fabricated by in situ synthesis from trigonal polymorph: preparation, sintering process, and negative thermal expansion properties

  • Ruiqi Zhao
  • Xi Chen
  • Hui Ma
  • Xishu Wang
  • Xinhua Zhao


In this study, negative thermal expansion (NTE) Zr1−x Yb x WMoO8−x/2 (x = 0, 0.04) ceramics were fabricated by in situ synthesis from trigonal polymorphous precursors for the first time. Phase transition was studied by means of powder X-ray diffraction. Study on the sintering process of Zr1−x Yb x WMoO8−x/2 (x = 0, 0.04) ceramics was performed by calcining a series of precursor pellets at 950, 980, and 1000 °C for different times, varying from 1 min to 1 h. The results indicate that the sintering process can be mainly divided into three stages: phase transition from trigonal precursors to cubic Zr1−x Yb x WMoO8−x/2 (c-Zr1−x Yb x WMoO8−x/2, 0–5 min), densification of c-Zr1−x Yb x WMoO8−x/2 (6–30 min), and the final sintering stage with little densification (>30 min). Densification reaches almost the maximum in the duration of ~30 min at assigned temperature. Temperature has little influence on densification of ZrWMoO8, but improves that of Zr0.96Yb0.04WMoO7.98 evidently. In addition, densification of ZrWMoO8 can be promoted markedly by introduction of Yb3+.


MoO3 Sinter Process Sinter Time Ceramic Surface Negative Thermal Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was supported by the Natural Science Foundation of China (Grants No. 20471010). Ruiqi Zhao also thanks the Doctoral Foundation of Henan Polytechnic University (Grants No. B2009-90) and the Key Technology Foundation of Henan Province (Grants No. 092102210363).


  1. 1.
    Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Science 272:90CrossRefGoogle Scholar
  2. 2.
    Evans JSO, Mary TA, Vogt T, Subramanian MA, Sleight AW (1996) Chem Mater 8:2809CrossRefGoogle Scholar
  3. 3.
    Closmann C, Sleight AW, Haygarth JC (1998) J Solid State Chem 139:424CrossRefGoogle Scholar
  4. 4.
    Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC (1997) Phase Transit 61:141CrossRefGoogle Scholar
  5. 5.
    Chen JC, Huang GC, Hu C, Weng JP (2003) Scripta Mater 49:261CrossRefGoogle Scholar
  6. 6.
    Verdon C, Dunand DC (1997) Scripta Mater 36:1075CrossRefGoogle Scholar
  7. 7.
    Kofteros M, Rodriguez S, Tandon V, Murr LE (2001) Scripta Mater 45:369CrossRefGoogle Scholar
  8. 8.
    Lommens P, Meyer CD, Bruneel E, Buysser KD, Driessche IV, Hoste S (2005) J Eur Ceram Soc 25:3605CrossRefGoogle Scholar
  9. 9.
    Miller W, Smith CW, Mackenzie DS, Evans KE (2009) J Mater Sci 44(20):5441. doi: 10.1007/s10853-009-3692-4 CrossRefGoogle Scholar
  10. 10.
    Allen S, Evans JSO (2003) Phys Rev B 68:134101CrossRefGoogle Scholar
  11. 11.
    Evans JSO, Hanson PA, Ibberson RM, Duan N, Kameswari U, Sleight AW (2000) J Am Chem Soc 122:8694CrossRefGoogle Scholar
  12. 12.
    Zhao RQ, Wang XS, Tao JZ, Yang XJ, Ma H, Zhao XH (2009) J Alloy Compd 470:379CrossRefGoogle Scholar
  13. 13.
    Martinek CA, Hummel FA (1970) J Am Ceram Soc 53:159CrossRefGoogle Scholar
  14. 14.
    Wilkinson AP, Lind C, Pattanaik S (1999) Chem Mater 11:101CrossRefGoogle Scholar
  15. 15.
    Kameswari U, Sleight AW, Evans JSO (2000) Int J Inorg Mater 2:333CrossRefGoogle Scholar
  16. 16.
    Huang L, Xiao QG, Ma H, Li GB, Liao FH, Qi CM, Zhao XH (2005) Eur J Inorg Chem 22:4521CrossRefGoogle Scholar
  17. 17.
    Guo SR, Deng XB, Ma H, Zhao XH (2007) Chem J Chin U 28:410Google Scholar
  18. 18.
    Liu QQ, Yang J, Sun XJ, Cheng XN, Xu GF, Yan XH (2007) J Mater Sci 42:2528. doi: 10.1007/s10853-007-1563-4 CrossRefGoogle Scholar
  19. 19.
    Liu Q, Yang J, Sun X, Cheng X (2008) Phys Stat Sol (B) 11:2477CrossRefGoogle Scholar
  20. 20.
    Mancheva M, Iordanova R, Dimitriev Y, Avdeev G (2009) J Non Cryst Solid 355:1904CrossRefGoogle Scholar
  21. 21.
    Sun L, Kwon P (2009) Mat Sci Eng A 527:93CrossRefGoogle Scholar
  22. 22.
    Zhao RQ, Yang XJ, Wang HL, Han JS, Ma H, Zhao XH (2007) J Solid State Chem 180:3160CrossRefGoogle Scholar
  23. 23.
    Dong C (1999) J Appl Crystallogr 32:838CrossRefGoogle Scholar
  24. 24.
    Noailles LD, Peng HH, Starkovich J, Dunn B (2004) Chem Mater 16(7):1252CrossRefGoogle Scholar
  25. 25.
    Deng XB, Tao JZ, Yang XJ, Ma H, Richardson JW, Zhao XH (2008) Chem Mater 20:1733CrossRefGoogle Scholar
  26. 26.
    Bell CF, Lott KAK (1976) Modern approach to inorganic chemistry, 3rd edn. Tokyo Kagaku Dozin-Butterworth Co. Ltd., Tokyo, p. 153Google Scholar
  27. 27.
    Zhang LM, Huang XH, Song XL (2004) Fundamentals of materials science. Wuhan University of Technology Press, WuhanGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ruiqi Zhao
    • 1
    • 2
  • Xi Chen
    • 2
    • 3
  • Hui Ma
    • 4
  • Xishu Wang
    • 5
  • Xinhua Zhao
    • 2
  1. 1.College of Physics and ChemistryHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  2. 2.College of ChemistryBeijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.School of Civil Engineering and CommunicationNorth China University of Water Source and Electric PowerZhengzhouPeople’s Republic of China
  4. 4.Analyzing and Testing CenterBeijing Normal UniversityBeijingPeople’s Republic of China
  5. 5.Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations