Skip to main content
Log in

Synthesis, characterization, and nonlinear optical properties of donor–acceptor conjugated polymers and polymer/Ag nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two new donor–acceptor (D–A) conjugated polymers P1 and P2 containing 3,4-didodecyloxythiophene and 1,3,4-oxadiazole units are synthesized via Wittig reaction methodology. Cyclic voltammetry studies reveal that the polymers are both p and n dopable, and possess low-lying LUMO energy levels (−3.34 eV for P1 and −3.46 eV for P2) and high-lying HOMO energy levels (−5.34 eV for P1 and −5.27 eV for P2). The optical band gap of the polymers is in the range of 2.25–2.29 eV, calculated from the onset absorption edge. The polymers emit orange to yellow light in the film state when irradiated with a UV light. The synthesized polymers are used to prepare polymer nanocomposites with different wt% of silver nanoparticles. The polymer nanocomposites are characterized by UV–Vis absorption spectroscopy, field emission scanning electron microscopy, and thermogravimetric analysis. Both polymers and polymer/Ag nanocomposites show good thermal stability with onset decomposition temperature around 300 °C under nitrogen atmosphere. The nonlinear optical properties of polymers and polymer/Ag nanocomposites are measured by Z-scan technique. Both polymers and polymer nanocomposites show a good optical limiting behavior. Nearly five times enhancement in the nonlinear optical properties is observed for polymer/Ag nanocomposites. The value of effective two-photon absorption coefficient (β) is in the order of 10−10–10−11 m/W. These results indicate that the synthesized polymers (P1 and P2) and their Ag nanocomposites are expected to be good candidates for application in photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skotheim TA, Elsenbaumer RL, Reynolds JR, Dekker M (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  2. Kraft A, Grimsdale C, Holmes AB (1998) Angew Chem Int Ed 37:402

    Article  Google Scholar 

  3. Mcquade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537

    Article  CAS  Google Scholar 

  4. Novak P, Muller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207

    Article  CAS  Google Scholar 

  5. Dimitrakopoulus CD, Mascaro DJ (2001) IBM J Res Dev 45:11

    Article  Google Scholar 

  6. Zou Y, Guan Z, Zhang Z, Huang Y, Wang N, Lu Z, Jiang Q, Yu J, Liu Y, Pu X (2012) J Mater Sci 47:5535. doi:10.1007/s10853-012-6446-7

    Article  CAS  Google Scholar 

  7. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94:243

    Article  CAS  Google Scholar 

  8. Jenekhe SA, Li S (2000) Appl Phys Lett 77:2635

    Article  CAS  Google Scholar 

  9. Sonmez G, Shen CKF, Rubin Y, Wudl F (2005) Adv Mater 17:897

    Article  CAS  Google Scholar 

  10. Prasad PN, David JW (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  11. John Kiran A, Udayakumar D, Chandrasekharan K, Adhikari AV, Shashikala HD (2006) J Phys B 39:3747

    Article  Google Scholar 

  12. Hegde PK, Adhikari AV, Manjunatha MG, Suchand Sandeep CS, Philip R (2011) Polym Int 60:112

    Article  CAS  Google Scholar 

  13. Ramos Ortiz G, Maldonado JL, Hernández MCG, Zolotukhin MG, Fomine S, Fröhlich N, Scherf U, Galbrecht F, Preis E, Salmon M, Cárdenas J, Chávez MI (2010) Polymer 51:2351

    Article  CAS  Google Scholar 

  14. Manjunatha MG, Adhikari AV, Hegde PK, Suchand Sandeep CS, Philip R (2009) J Mater Sci 44:6069. doi:10.1007/s10853-009-3838-4

    Article  CAS  Google Scholar 

  15. Gayvoronsky V, Galas A, Shepelyavyy E, Dittrich Th, Timoshenko VYu, Nepijko SA, Brodyn MS, Koch F (2005) Appl Phys B 80:97

    Article  CAS  Google Scholar 

  16. Venkatram N, Rao DN, Akundi MA (2005) Opt Express 13:867

    Article  CAS  Google Scholar 

  17. Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Nanotechnology 17:3499

    Article  CAS  Google Scholar 

  18. Neeves AE, Meyer BH (1988) Opt Lett 13:1087

    Article  CAS  Google Scholar 

  19. Sezer A, Gurudas U, Collins B, Mckinlay A, Bubb D (2009) Chem Phys Lett 477:164

    Article  CAS  Google Scholar 

  20. Luo Q, Li X, Wang D, Wang Y, An J (2011) J Mater Sci 46:1646. doi:10.1007/s10853-010-4981-7

    Article  CAS  Google Scholar 

  21. Hu XY, Jiang P, Ding CY, Yang H, Gong QH (2009) Nat Photonics 2:185

    Article  Google Scholar 

  22. Hu X, Zhang J, Yang H, Gong Q (2009) Opt Express 17:18858

    Article  CAS  Google Scholar 

  23. Chen X, Tao J, Zou G, Zhang Q, Wang P (2010) Appl Phys A 100:223

    Article  CAS  Google Scholar 

  24. Udayakumar D, Adhikari AV (2006) Synth Met 156:1168

    Article  CAS  Google Scholar 

  25. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) IEEE J Quant Electron 26:760

    Article  CAS  Google Scholar 

  26. Chen X, Zou G, Deng Y, Zhang Q (2008) Nanotechnology 19:195703

    Article  Google Scholar 

  27. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Mater Chem Phys 93:117

    Article  CAS  Google Scholar 

  28. Joshi HS, Jamshidi R, Tor Y (1999) Angew Chem Int Ed Engl 38:2721

    Article  Google Scholar 

  29. De Leeuw DM, Simenon MMJ, Brown AB, Einerhand REF (1997) Synth Met 87:53

    Article  Google Scholar 

  30. Hou J, Park MH, Zhang S, Yao Y, Chen LM, Li JH, Yang Y (2008) Macromolecules 41:6012

    Article  CAS  Google Scholar 

  31. Ma CQ, Fonrodona M, Schikora MC, Wienk MM, Janssen RAJ, Bauerle P (2008) Adv Funct Mater 18:3323

    Article  CAS  Google Scholar 

  32. Bradley DDC (1993) Synth Met 54:401

    Article  CAS  Google Scholar 

  33. Cervini R, Li XC, Spencer GPC, Holmes A, Moratti SC, Friend RH (1997) Synth Met 84:359

    Article  CAS  Google Scholar 

  34. Manjunatha MG, Adhikari AV, Hegde PK (2009) Eur Polym J 45:763

    Article  CAS  Google Scholar 

  35. Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong KL (1998) Opt Lett 23:388

    Article  CAS  Google Scholar 

  36. Rudreshaa BJ, Ramachandra Bhat B, Sampath Kumara HC, Shiva Kumara KI, Safakath K, Philip R (2011) Synth Met 161:535

    Article  Google Scholar 

  37. Karthikeyan B, Anija M, Suchand Sandeep CS, Muhammad NTM, Philip R (2008) Opt Commun 28:2933

    Article  Google Scholar 

  38. Nan H, Yu C, Jinrui B, Jun W, Werner JB, Jinhui Z (2009) J Phys Chem C 113:13029

    Google Scholar 

  39. Sivaramakrishnan S, Muthukumar VS, Sivasankara SS, Venkataramanaiah K, Reppert J, Rao AM, Anija M, Philip R, Kuthirummal N (2007) Appl Phys Lett 91:093104

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Prof. Reji Philip, Raman Research Institute, India for providing facility for Z-scan measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udayakumar Dalimba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murali, M.G., Dalimba, U. & Sridharan, K. Synthesis, characterization, and nonlinear optical properties of donor–acceptor conjugated polymers and polymer/Ag nanocomposites. J Mater Sci 47, 8022–8034 (2012). https://doi.org/10.1007/s10853-012-6692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6692-8

Keywords

Navigation