Journal of Materials Science

, Volume 47, Issue 23, pp 8022–8034 | Cite as

Synthesis, characterization, and nonlinear optical properties of donor–acceptor conjugated polymers and polymer/Ag nanocomposites

  • M. G. Murali
  • Udayakumar Dalimba
  • Kishore Sridharan


Two new donor–acceptor (D–A) conjugated polymers P1 and P2 containing 3,4-didodecyloxythiophene and 1,3,4-oxadiazole units are synthesized via Wittig reaction methodology. Cyclic voltammetry studies reveal that the polymers are both p and n dopable, and possess low-lying LUMO energy levels (−3.34 eV for P1 and −3.46 eV for P2) and high-lying HOMO energy levels (−5.34 eV for P1 and −5.27 eV for P2). The optical band gap of the polymers is in the range of 2.25–2.29 eV, calculated from the onset absorption edge. The polymers emit orange to yellow light in the film state when irradiated with a UV light. The synthesized polymers are used to prepare polymer nanocomposites with different wt% of silver nanoparticles. The polymer nanocomposites are characterized by UV–Vis absorption spectroscopy, field emission scanning electron microscopy, and thermogravimetric analysis. Both polymers and polymer/Ag nanocomposites show good thermal stability with onset decomposition temperature around 300 °C under nitrogen atmosphere. The nonlinear optical properties of polymers and polymer/Ag nanocomposites are measured by Z-scan technique. Both polymers and polymer nanocomposites show a good optical limiting behavior. Nearly five times enhancement in the nonlinear optical properties is observed for polymer/Ag nanocomposites. The value of effective two-photon absorption coefficient (β) is in the order of 10−10–10−11 m/W. These results indicate that the synthesized polymers (P1 and P2) and their Ag nanocomposites are expected to be good candidates for application in photonic devices.


Silver Nanoparticles High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Thiophene Ring Film State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thank Prof. Reji Philip, Raman Research Institute, India for providing facility for Z-scan measurements.


  1. 1.
    Skotheim TA, Elsenbaumer RL, Reynolds JR, Dekker M (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Kraft A, Grimsdale C, Holmes AB (1998) Angew Chem Int Ed 37:402CrossRefGoogle Scholar
  3. 3.
    Mcquade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537CrossRefGoogle Scholar
  4. 4.
    Novak P, Muller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207CrossRefGoogle Scholar
  5. 5.
    Dimitrakopoulus CD, Mascaro DJ (2001) IBM J Res Dev 45:11CrossRefGoogle Scholar
  6. 6.
    Zou Y, Guan Z, Zhang Z, Huang Y, Wang N, Lu Z, Jiang Q, Yu J, Liu Y, Pu X (2012) J Mater Sci 47:5535. doi: 10.1007/s10853-012-6446-7 CrossRefGoogle Scholar
  7. 7.
    Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94:243CrossRefGoogle Scholar
  8. 8.
    Jenekhe SA, Li S (2000) Appl Phys Lett 77:2635CrossRefGoogle Scholar
  9. 9.
    Sonmez G, Shen CKF, Rubin Y, Wudl F (2005) Adv Mater 17:897CrossRefGoogle Scholar
  10. 10.
    Prasad PN, David JW (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New YorkGoogle Scholar
  11. 11.
    John Kiran A, Udayakumar D, Chandrasekharan K, Adhikari AV, Shashikala HD (2006) J Phys B 39:3747CrossRefGoogle Scholar
  12. 12.
    Hegde PK, Adhikari AV, Manjunatha MG, Suchand Sandeep CS, Philip R (2011) Polym Int 60:112CrossRefGoogle Scholar
  13. 13.
    Ramos Ortiz G, Maldonado JL, Hernández MCG, Zolotukhin MG, Fomine S, Fröhlich N, Scherf U, Galbrecht F, Preis E, Salmon M, Cárdenas J, Chávez MI (2010) Polymer 51:2351CrossRefGoogle Scholar
  14. 14.
    Manjunatha MG, Adhikari AV, Hegde PK, Suchand Sandeep CS, Philip R (2009) J Mater Sci 44:6069. doi: 10.1007/s10853-009-3838-4 CrossRefGoogle Scholar
  15. 15.
    Gayvoronsky V, Galas A, Shepelyavyy E, Dittrich Th, Timoshenko VYu, Nepijko SA, Brodyn MS, Koch F (2005) Appl Phys B 80:97CrossRefGoogle Scholar
  16. 16.
    Venkatram N, Rao DN, Akundi MA (2005) Opt Express 13:867CrossRefGoogle Scholar
  17. 17.
    Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Nanotechnology 17:3499CrossRefGoogle Scholar
  18. 18.
    Neeves AE, Meyer BH (1988) Opt Lett 13:1087CrossRefGoogle Scholar
  19. 19.
    Sezer A, Gurudas U, Collins B, Mckinlay A, Bubb D (2009) Chem Phys Lett 477:164CrossRefGoogle Scholar
  20. 20.
    Luo Q, Li X, Wang D, Wang Y, An J (2011) J Mater Sci 46:1646. doi: 10.1007/s10853-010-4981-7 CrossRefGoogle Scholar
  21. 21.
    Hu XY, Jiang P, Ding CY, Yang H, Gong QH (2009) Nat Photonics 2:185CrossRefGoogle Scholar
  22. 22.
    Hu X, Zhang J, Yang H, Gong Q (2009) Opt Express 17:18858CrossRefGoogle Scholar
  23. 23.
    Chen X, Tao J, Zou G, Zhang Q, Wang P (2010) Appl Phys A 100:223CrossRefGoogle Scholar
  24. 24.
    Udayakumar D, Adhikari AV (2006) Synth Met 156:1168CrossRefGoogle Scholar
  25. 25.
    Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) IEEE J Quant Electron 26:760CrossRefGoogle Scholar
  26. 26.
    Chen X, Zou G, Deng Y, Zhang Q (2008) Nanotechnology 19:195703CrossRefGoogle Scholar
  27. 27.
    Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Mater Chem Phys 93:117CrossRefGoogle Scholar
  28. 28.
    Joshi HS, Jamshidi R, Tor Y (1999) Angew Chem Int Ed Engl 38:2721CrossRefGoogle Scholar
  29. 29.
    De Leeuw DM, Simenon MMJ, Brown AB, Einerhand REF (1997) Synth Met 87:53CrossRefGoogle Scholar
  30. 30.
    Hou J, Park MH, Zhang S, Yao Y, Chen LM, Li JH, Yang Y (2008) Macromolecules 41:6012CrossRefGoogle Scholar
  31. 31.
    Ma CQ, Fonrodona M, Schikora MC, Wienk MM, Janssen RAJ, Bauerle P (2008) Adv Funct Mater 18:3323CrossRefGoogle Scholar
  32. 32.
    Bradley DDC (1993) Synth Met 54:401CrossRefGoogle Scholar
  33. 33.
    Cervini R, Li XC, Spencer GPC, Holmes A, Moratti SC, Friend RH (1997) Synth Met 84:359CrossRefGoogle Scholar
  34. 34.
    Manjunatha MG, Adhikari AV, Hegde PK (2009) Eur Polym J 45:763CrossRefGoogle Scholar
  35. 35.
    Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong KL (1998) Opt Lett 23:388CrossRefGoogle Scholar
  36. 36.
    Rudreshaa BJ, Ramachandra Bhat B, Sampath Kumara HC, Shiva Kumara KI, Safakath K, Philip R (2011) Synth Met 161:535CrossRefGoogle Scholar
  37. 37.
    Karthikeyan B, Anija M, Suchand Sandeep CS, Muhammad NTM, Philip R (2008) Opt Commun 28:2933CrossRefGoogle Scholar
  38. 38.
    Nan H, Yu C, Jinrui B, Jun W, Werner JB, Jinhui Z (2009) J Phys Chem C 113:13029Google Scholar
  39. 39.
    Sivaramakrishnan S, Muthukumar VS, Sivasankara SS, Venkataramanaiah K, Reppert J, Rao AM, Anija M, Philip R, Kuthirummal N (2007) Appl Phys Lett 91:093104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. G. Murali
    • 1
  • Udayakumar Dalimba
    • 1
  • Kishore Sridharan
    • 2
  1. 1.Department of ChemistryNational Institute of Technology KarnatakaMangaloreIndia
  2. 2.Light and Matter Physics GroupRaman Research InstituteBangaloreIndia

Personalised recommendations