Journal of Materials Science

, Volume 47, Issue 20, pp 7280–7290 | Cite as

Interlaminar fracture properties of weft-knitted/woven fabric interply hybrid composite materials

  • Ki-Young Kim
  • Lin Ye


An experimental study has been undertaken to characterize the delamination behavior and tensile properties of interply hybrid laminated composites reinforced by interlock weft-knitted and woven glass fiber preform fabrics. The hybrid composites, comprising the alternate layers of interlock and uniweave fabrics, were compared to interlock knitted (only) and uniweave (only) composites with respect to delamination and tensile performances. Mode-I double cantilever beam and mode-II end-notched flexure tests were carried out to assess the interlaminar fracture toughness using aluminum-strip stiffened specimens. The mode-I and mode-II interlaminar fracture toughness values, G IC and G IIC, for the hybrid composite were about three and two times higher than that for the uniweave composite, respectively. The tensile strength and modulus of the hybrid composite were 315 MPa and 12.8 GPa in the wale direction, respectively, demonstrating that the strength and modulus were found to be slightly lower than those of the uniweave composite, and significantly improved in comparison with the interlock knitted composites.


Hybrid Composite Double Cantilever Beam Double Cantilever Beam Specimen Warp Direction Interlaminar Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hearle JWS, Du GW (2000) J Text Inst 81:360CrossRefGoogle Scholar
  2. 2.
    Verpoest I, Gommers B, Huysmans G, Ivens J et al. (1997) The potential of knitted fabrics as a reinforcement for composites. In: Proceedings of the 11th international conference on composite materials (ICCM-11), Gold Coast, vol I. pp 108–133Google Scholar
  3. 3.
    Lau KW, Dias T (1994) J Text Inst 85:173CrossRefGoogle Scholar
  4. 4.
    Gommers B, Verpoest I, Van Houtte P (1996) Compos Sci Technol 56:685CrossRefGoogle Scholar
  5. 5.
    Ramakrishina S, Hull D (1994) Compos Sci Technol 50:237CrossRefGoogle Scholar
  6. 6.
    Ramakrishina S, Hull D (1994) Compos Sci Technol 50:249CrossRefGoogle Scholar
  7. 7.
    Ramakrishina S, Hamada H, Cheng KB (1997) Composites A 28A:25CrossRefGoogle Scholar
  8. 8.
    Ruan X, Chou TS (1996) Compos Sci Technol 56:1391CrossRefGoogle Scholar
  9. 9.
    Rudd CD, Owen MJ, Middleton V (1990) Compos Sci Technol 39:261CrossRefGoogle Scholar
  10. 10.
    Wu W, Kotaki MM, Fujita A (1993) J Reinf Plast Compos 12:1096CrossRefGoogle Scholar
  11. 11.
    Chou S, Wu C (1992) J Reinf Plast Compos 11:1125Google Scholar
  12. 12.
    Karger-Kocsis J, Yuan Q (1997) J Thermoplast Compos Mater 10:163Google Scholar
  13. 13.
    Ramakrishina S, Hamada H, Rydin R, Chou TW (1995) Sci Eng Compos Mater 4:61CrossRefGoogle Scholar
  14. 14.
    Ramakrishina S, Hull D (1993) Compos Sci Technol 49:349CrossRefGoogle Scholar
  15. 15.
    Ramakrishina S (1995) J Reinf Plast Compos 14:1121Google Scholar
  16. 16.
    Bannister M, Herszberg U (1995) The manufacture and analysis of composite structures from knitted preforms. In: Proceedings of 4th international conference on automated composites, Nottingham. pp 397–404Google Scholar
  17. 17.
    Falconet D, Bourban PE, Padita S et al (2002) Composites A 33:579CrossRefGoogle Scholar
  18. 18.
    Huyman I, Gommers B, Verpoest I (1996) Mechanical properties of (2D) warp knitted fabric composites: an experimental and numerical analysis. In: Proceedings of SAMPE Europe conference and exhibition, Basel, pp 97–108Google Scholar
  19. 19.
    Mouritz AP, Baini C, Herszberg I (1999) Composites A 30A:859CrossRefGoogle Scholar
  20. 20.
    Kim KY, Curiskis JI, Ye L, Fu SY (2005) Composites A 36A:954CrossRefGoogle Scholar
  21. 21.
    Naik NK, Ramahima R, Arya H, Prabhu SV, Shamarao N (2001) Composites B 32B:565CrossRefGoogle Scholar
  22. 22.
    Spencer DJ (1989) Knitting technology, 2nd edn. Pergamon Press, LondonGoogle Scholar
  23. 23.
    Guenon VA, Chou TW, Gillespie JW (1989) J Mater Sci 24:4168. doi: 10.1007/BF01168991 CrossRefGoogle Scholar
  24. 24.
    Short SR (1995) Composites 26:431CrossRefGoogle Scholar
  25. 25.
    ASTM (1994) ASTM D 5528-94a Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. American Society of Testing and Materials, PhiladelphiaGoogle Scholar
  26. 26.
    ESIS (1989) Protocol for interlaminar fracture testing of composites, European group on fracture, Polymer and composites task groupGoogle Scholar
  27. 27.
    ASTM (2000) ASTM D 3039M-00 standard test method for tensile properties of polymer matrix composites. American Society of Testing and Materials, PhiladelphiaGoogle Scholar
  28. 28.
    Beehag A, Ye L (1996) J Thermoplast Compo Mater 9:129Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Textile Convergence of Biotechnology & NanotechnologyKorea Institute of Industrial TechnologyAnsan-siSouth Korea
  2. 2.Centre for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia

Personalised recommendations