Skip to main content
Log in

Indentation creep of the wrought AZ31 magnesium alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Creep behavior of a wrought Mg–3Al–1Zn (AZ31) alloy was investigated by long-term Vickers indentation testing under constant loads of 5 and 10 N and at temperatures in the range 423–523 K. Based on the steady-state power-law creep relationship, the stress exponents were determined. The creep behavior can be divided into two stress regimes with different stress exponents and activation energy values. The low-stress regime activation energy of 96.2 kJ mol−1, which can be interpreted as that for the activation energy for Al diffusion in Mg, and stress exponents of about 3.0–3.4 suggest that the operative creep mechanism is dislocation viscous glide governed by the diffusion of aluminum atoms in magnesium. This behavior is in contrast to the high-stress regime, in which the average values of n = 6 and Q = 132.4 kJ mol−1 imply that dislocation climb-controlled creep is the dominant deformation mechanism. Stress exponents and activation energies obtained by different analysis methods of the indentation tests are in good agreement with each other and with those of the conventional tensile creep tests on AZ31 magnesium alloy reported in the literature. The localized indentation creep tests are, thus, considered capable of acquiring reliable information on the creep behavior of wrought magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hasani GH, Mahmudi R (2011) Mater Des 32:3736

    Article  CAS  Google Scholar 

  2. Beggs PD, Song W, Easton M (2010) Int J Mech Sci 52:1634

    Article  Google Scholar 

  3. Chino Y, Sassa K, Kamiya A, Mabuchi M (2008) Mater Sci Eng A 473:195

    Article  Google Scholar 

  4. Somekawa H, Hirai K, Watanabe H, Tagigawa Y, Higashi K (2005) Mater Sci Eng A 407:53

    Article  Google Scholar 

  5. Vagarali SS, Langdon TG (1982) Acta Metall 30:1157

    Article  CAS  Google Scholar 

  6. Kim WJ, Chung SW, Chung CS, Kum D (2001) Acta Mater 49:3337

    Article  CAS  Google Scholar 

  7. Chung SW, Watanabe H, Kim WJ, Higashi K (2004) Mater Trans 45:1266

    Article  CAS  Google Scholar 

  8. Kim HK, Kim WJ (2007) J Mater Sci 42:6171. doi:10.1007/s10853-006-1162-9

    Article  CAS  Google Scholar 

  9. Mahmudi R, Geranmayeh AR, Khanbareh H, Jahangiri N (2009) Mater Des 30:574

    Article  CAS  Google Scholar 

  10. Mahmudi R, Rezaee-Bazzaz A (2005) Mater Letts 59:1705

    Article  CAS  Google Scholar 

  11. Mahmudi R, Geranmayeh AR, Bakherad M, Allami M (2007) Mater Sci Eng A 457:173

    Article  Google Scholar 

  12. Mahmudi R, Roumina R, Raeisinia B (2004) Mater Sci Eng A 382:15

    Article  Google Scholar 

  13. Mahmudi R, Rezaee-Bazzaz A (2007) J Mater Sci 42:4051. doi:10.1007/s10853-006-0187-4

    Article  CAS  Google Scholar 

  14. Juhasz A, Tasnadi P, Kovacs I (1986) J Mater Sci Lett 5:35

    Article  CAS  Google Scholar 

  15. Sargent PM, Ashby MF (1992) Mater Sci Technol 8:594

    Article  CAS  Google Scholar 

  16. Roumina R, Raeisinia B, Mahmudi R (2004) Scripta Mater 51:497

    Article  CAS  Google Scholar 

  17. Slutsky LJ, Garland CM (1957) Phys Rev 107:972

    Article  CAS  Google Scholar 

  18. Tewari R, Dey GK, Kutty TRG, Sengupta AK, Prabhu N, Banerjee S (2004) Metall Mater Trans 35A:205

    Article  CAS  Google Scholar 

  19. Yang KT, Kim HK (2006) J Mech Sci Technol 20:1209

    Article  Google Scholar 

  20. Tabor D (1951) The hardness of metals. Oxford University Press, New York, p 74

    Google Scholar 

  21. Kabirian F, Mahmudi R (2009) Metall Mater Trans 40A:116

    Article  CAS  Google Scholar 

  22. Kondori B, Mahmudi R (2009) Metall Mater Trans 40A:2007

    Article  CAS  Google Scholar 

  23. Kabirian F, Mahmudi R (2009) Metall Mater Trans 40A:2190

    Article  CAS  Google Scholar 

  24. Kabirian F, Mahmudi R (2010) Metall Mater Trans 40A:3488

    Article  Google Scholar 

  25. Mahmudi R, Geranmayeh AR, Allami M, Bakherad M (2007) J Electron Mater 36:1703

    Article  CAS  Google Scholar 

  26. Nayyeri G, Mahmudi R (2010) Mater Sci Eng A 527:2087

    Article  Google Scholar 

  27. Reinikainen T, Kivilahti J (1999) Metall Mater Trans 30A:123

    Article  CAS  Google Scholar 

  28. Mathew MD, Yang H, Movva S, Murty KL (2005) Metall Mater Trans 36A:99

    Article  CAS  Google Scholar 

  29. Murty KL (1973) Scripta Metall 7:899

    Article  CAS  Google Scholar 

  30. Mohamed FA, Langdon TG (1974) Acta Metall 22:779

    Article  CAS  Google Scholar 

  31. Yavari P, Langdon TG (1982) Acta Metall 30:2181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmudi, R., Ansary, S. & Esfandyarpour, M.J. Indentation creep of the wrought AZ31 magnesium alloy. J Mater Sci 47, 7181–7188 (2012). https://doi.org/10.1007/s10853-012-6664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6664-z

Keywords

Navigation