Journal of Materials Science

, Volume 47, Issue 20, pp 7181–7188 | Cite as

Indentation creep of the wrought AZ31 magnesium alloy



Creep behavior of a wrought Mg–3Al–1Zn (AZ31) alloy was investigated by long-term Vickers indentation testing under constant loads of 5 and 10 N and at temperatures in the range 423–523 K. Based on the steady-state power-law creep relationship, the stress exponents were determined. The creep behavior can be divided into two stress regimes with different stress exponents and activation energy values. The low-stress regime activation energy of 96.2 kJ mol−1, which can be interpreted as that for the activation energy for Al diffusion in Mg, and stress exponents of about 3.0–3.4 suggest that the operative creep mechanism is dislocation viscous glide governed by the diffusion of aluminum atoms in magnesium. This behavior is in contrast to the high-stress regime, in which the average values of n = 6 and Q = 132.4 kJ mol−1 imply that dislocation climb-controlled creep is the dominant deformation mechanism. Stress exponents and activation energies obtained by different analysis methods of the indentation tests are in good agreement with each other and with those of the conventional tensile creep tests on AZ31 magnesium alloy reported in the literature. The localized indentation creep tests are, thus, considered capable of acquiring reliable information on the creep behavior of wrought magnesium alloys.


Creep Behavior Stress Exponent AZ31 Alloy Indentation Creep Pipe Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hasani GH, Mahmudi R (2011) Mater Des 32:3736CrossRefGoogle Scholar
  2. 2.
    Beggs PD, Song W, Easton M (2010) Int J Mech Sci 52:1634CrossRefGoogle Scholar
  3. 3.
    Chino Y, Sassa K, Kamiya A, Mabuchi M (2008) Mater Sci Eng A 473:195CrossRefGoogle Scholar
  4. 4.
    Somekawa H, Hirai K, Watanabe H, Tagigawa Y, Higashi K (2005) Mater Sci Eng A 407:53CrossRefGoogle Scholar
  5. 5.
    Vagarali SS, Langdon TG (1982) Acta Metall 30:1157CrossRefGoogle Scholar
  6. 6.
    Kim WJ, Chung SW, Chung CS, Kum D (2001) Acta Mater 49:3337CrossRefGoogle Scholar
  7. 7.
    Chung SW, Watanabe H, Kim WJ, Higashi K (2004) Mater Trans 45:1266CrossRefGoogle Scholar
  8. 8.
    Kim HK, Kim WJ (2007) J Mater Sci 42:6171. doi: 10.1007/s10853-006-1162-9 CrossRefGoogle Scholar
  9. 9.
    Mahmudi R, Geranmayeh AR, Khanbareh H, Jahangiri N (2009) Mater Des 30:574CrossRefGoogle Scholar
  10. 10.
    Mahmudi R, Rezaee-Bazzaz A (2005) Mater Letts 59:1705CrossRefGoogle Scholar
  11. 11.
    Mahmudi R, Geranmayeh AR, Bakherad M, Allami M (2007) Mater Sci Eng A 457:173CrossRefGoogle Scholar
  12. 12.
    Mahmudi R, Roumina R, Raeisinia B (2004) Mater Sci Eng A 382:15CrossRefGoogle Scholar
  13. 13.
    Mahmudi R, Rezaee-Bazzaz A (2007) J Mater Sci 42:4051. doi: 10.1007/s10853-006-0187-4 CrossRefGoogle Scholar
  14. 14.
    Juhasz A, Tasnadi P, Kovacs I (1986) J Mater Sci Lett 5:35CrossRefGoogle Scholar
  15. 15.
    Sargent PM, Ashby MF (1992) Mater Sci Technol 8:594CrossRefGoogle Scholar
  16. 16.
    Roumina R, Raeisinia B, Mahmudi R (2004) Scripta Mater 51:497CrossRefGoogle Scholar
  17. 17.
    Slutsky LJ, Garland CM (1957) Phys Rev 107:972CrossRefGoogle Scholar
  18. 18.
    Tewari R, Dey GK, Kutty TRG, Sengupta AK, Prabhu N, Banerjee S (2004) Metall Mater Trans 35A:205CrossRefGoogle Scholar
  19. 19.
    Yang KT, Kim HK (2006) J Mech Sci Technol 20:1209CrossRefGoogle Scholar
  20. 20.
    Tabor D (1951) The hardness of metals. Oxford University Press, New York, p 74Google Scholar
  21. 21.
    Kabirian F, Mahmudi R (2009) Metall Mater Trans 40A:116CrossRefGoogle Scholar
  22. 22.
    Kondori B, Mahmudi R (2009) Metall Mater Trans 40A:2007CrossRefGoogle Scholar
  23. 23.
    Kabirian F, Mahmudi R (2009) Metall Mater Trans 40A:2190CrossRefGoogle Scholar
  24. 24.
    Kabirian F, Mahmudi R (2010) Metall Mater Trans 40A:3488CrossRefGoogle Scholar
  25. 25.
    Mahmudi R, Geranmayeh AR, Allami M, Bakherad M (2007) J Electron Mater 36:1703CrossRefGoogle Scholar
  26. 26.
    Nayyeri G, Mahmudi R (2010) Mater Sci Eng A 527:2087CrossRefGoogle Scholar
  27. 27.
    Reinikainen T, Kivilahti J (1999) Metall Mater Trans 30A:123CrossRefGoogle Scholar
  28. 28.
    Mathew MD, Yang H, Movva S, Murty KL (2005) Metall Mater Trans 36A:99CrossRefGoogle Scholar
  29. 29.
    Murty KL (1973) Scripta Metall 7:899CrossRefGoogle Scholar
  30. 30.
    Mohamed FA, Langdon TG (1974) Acta Metall 22:779CrossRefGoogle Scholar
  31. 31.
    Yavari P, Langdon TG (1982) Acta Metall 30:2181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Metallurgical and Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations