Journal of Materials Science

, Volume 47, Issue 20, pp 7148–7156 | Cite as

Preparation and characterization of polyaniline/cerium dioxide (CeO2) nanocomposite via in situ polymerization



Crystalline ceria (CeO2) nanoparticles have been successfully synthesized by a microwave-assisted solution method. Polyaniline (PANI)/cerium dioxide (CeO2) nanocomposite was synthesized by in situ polymerization of aniline in the presence of CeO2 nanoparticles. Characterization of CeO2 and PANI/CeO2 nanomaterials are carried out using various studies such as powder X-ray diffraction, infrared spectral and UV–Vis absorption spectral analyses, scanning electron microscopic and high-resolution transmission electron microscopic (HRTEM) studies and thermal analysis. The HRTEM of the images indicate that the CeO2 nanoparticles were embedded in the PANI matrix forming the core–shell structure.


CeO2 PANI Select Area Electron Diffraction Pattern Pure PANI Ammonium Ceric Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The supports extended in the research by SAIF-STIC (Cochin), M.K. University (Madurai), and SAIF-NEHU (Shillong) are gratefully acknowledged. Also we thank authorities of Management of Infant Jesus College of Engineering and Technology, Tuticorin; Aditanar College of Arts and Science, Tiruchendur; The MDT Hindu College, Tirunelveli for the encouragement given to us to carry out the research study.


  1. 1.
    Malinauskas A (2001) Polymer 42:3959Google Scholar
  2. 2.
    Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Dekker, New YorkGoogle Scholar
  3. 3.
    Werne TV, Patten TE (2001) J Am Chem Soc 123:7497Google Scholar
  4. 4.
    Zhang H, Ruhe J (2005) J Macromol 38:10743Google Scholar
  5. 5.
    Sandra L, Narae K, Nathan D (2006) Chem Mater 18:5137Google Scholar
  6. 6.
    Pethkar S, Patil R, Kher J, Vijayarnohanan K (1999) Thin Solid Films 349:105Google Scholar
  7. 7.
    Khanna PK, Singh N, Charan S, Sunil Lonkar P, Satyanarayana Reddy A, Patil Y, Kasi Viswanath A (2006) Mater Chem Phys 97:288Google Scholar
  8. 8.
    Hesheng X, Qi W (2002) Chem Mater 14:2158Google Scholar
  9. 9.
    Danielle C, Michelle S, Ivo A, Aldo Z (2003) Chem Mater 15:4658Google Scholar
  10. 10.
    Bondioli F, Bonamartini A, Leonelli C, Manfredini T (1999) Mater Res Bull 34:2159Google Scholar
  11. 11.
    Bo K, Jae J, Seung H, Jinsoo J (2002) Macromolecules 35:1419Google Scholar
  12. 12.
    Park J, Park S, Koukitu A, Hatozaki O, Oyarna N (2004) Synth Met 141:265Google Scholar
  13. 13.
    Sui X, Chu Y, Xing S, Liu C (2004) Mater Lett 58:1255Google Scholar
  14. 14.
    Wu NC, Shi EW, Zheng YQ, Li WJ (2002) J Am Ceram Soc 85:2462Google Scholar
  15. 15.
    Hirano M, Kato E (1996) J Mater Sci Lett 15:1249Google Scholar
  16. 16.
    Sanchez MG, Gazquez JL (1987) J Catal 104:120Google Scholar
  17. 17.
    Jiang M, Wood NO, Komanduri R (1998) Wear 220:59Google Scholar
  18. 18.
    Izu N, Shin W, Murayarna N, Kanzaki S (2002) Sens Actuators B 87:95Google Scholar
  19. 19.
    Yabe S, sato T (2003) J Solid State Chem 171:7Google Scholar
  20. 20.
    Chen PL, Chen IW (1993) J Am Ceram Soc 76:1577Google Scholar
  21. 21.
    Djuricic B, Pickering S, Euro J (1999) Ceram Soc 19:1925Google Scholar
  22. 22.
    Zhou XD, Huebner W, Anderson HU (2002) Appl Phys Lett 80:3814Google Scholar
  23. 23.
    Li LP, Lin XM, Li GS, Inomata H (2001) J Mater Res 16:3207Google Scholar
  24. 24.
    Komarneni S, Rajha R (1999) Mater Chem Phys 61:50Google Scholar
  25. 25.
    Yang H, Huang C, Tang A, Zhang X, Yang W (2005) Mater Res Bull 40:1690Google Scholar
  26. 26.
    Yu K-L, Ruan G-L, Ben Y-H, Zou J-J (2007) Mater Sci Eng B 139:197Google Scholar
  27. 27.
    Chang H-Y, Chen H-I (2005) J Cryst Growth 283:457Google Scholar
  28. 28.
    Jiaoxing X, Li G, Li L (2008) Mater Res Bull 43:990Google Scholar
  29. 29.
    Jin H, Wang N, Liang X, Hou S (2010) Mater Lett 64:1254Google Scholar
  30. 30.
    Brightson M, Selvarajan P, Kennady Vethanathan J, Freeda TH, Meenakshi Sundar S (2010) Recent Res Sci Technol 2(6):29Google Scholar
  31. 31.
    Abdiryim T, Xiao-Gang Z, Jamal R (2005) Mater Chem Phys 90:367Google Scholar
  32. 32.
    Goel S, Gupta A, Singh KP, Hehrotra R, Kandpal HC (2007) Mater Sci Eng A 443:71Google Scholar
  33. 33.
    Feng W, Sun E, Fujii A, Wu HC, Niihara K, Yoshino K (2000) Bull Chem Soc Jpn 73:2627Google Scholar
  34. 34.
    Li X, Chen W, Bian C, He J, Ning X, Xue G (2003) Appl Surf Sci 16:217Google Scholar
  35. 35.
    Zhang DS, Fu HX, Shi LY, Pan CS, Li Q, Chu YL, Yu WY (2007) Inorg Chem 46:2446Google Scholar
  36. 36.
    Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S, Maensiri S (2009) Mater Chem Phys 115:423Google Scholar
  37. 37.
    Nakagawa K, Murata Y, Kishida M, Adachi M, Hiro M, Susa K (2007) Mater Chem Phys 104:30Google Scholar
  38. 38.
    Chuang F-Y, Yang S-M (2008) J Colloid Interface Sci 20:194Google Scholar
  39. 39.
    Tao Y, Wang H, Xia Y, Zhang G, Haiping W, Tao G (2010) Mater Chem Phys 124:541Google Scholar
  40. 40.
    Karatchevtseva I, Zhang Z, Hanna J, Luca V (2006) Chem Mater 18:4908Google Scholar
  41. 41.
    Kulkarni M, Viswanath A (2004) J Macromol Sci Part A 41:1173Google Scholar
  42. 42.
    Kamruddin M, Ajikumar PK, Nithya R, Mangamma G, Tyagi AK, Raj B (2006) Powder Technol 161:145Google Scholar
  43. 43.
    Kamruddin M, Ajikumar PK, Nithya R, Tyagi AK, Raj B (2004) Scr Mater 50:417Google Scholar
  44. 44.
    Djuricic B, Pickering S (1999) J Eur Ceram Soc 19:1925Google Scholar
  45. 45.
    Rosenheim A, Schwer H (1914) Z Anorg Chem 89:224Google Scholar
  46. 46.
    Baker LCW, Glick DC (1998) Chem Rev 98:3Google Scholar
  47. 47.
    Li XW, Chen W, Bian CQ, He JB, Xu N, Xue G (2003) Appl Surf Sci 217:16Google Scholar
  48. 48.
    Chen HI, Chang HY (2004) Colloids Surf A 242:61Google Scholar
  49. 49.
    Hu CG, Zhang ZW, Liu H, Gao PX, Wang ZL (2006) Nanotechnology 7:5983Google Scholar
  50. 50.
    Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Curr Appl Phys 8:391Google Scholar
  51. 51.
    Jing S, Xing S, Lianxiang Y, Yan W, Zhao C (2007) Mater Lett 61:2794Google Scholar
  52. 52.
    Mo T-C, Wang H-W, Chen S-Y, Yeh Y-C (2008) Ceram Int 34:1767Google Scholar
  53. 53.
    Jiang J, Ai L, Li L (2009) J Non-Cryst Solids 355:1733Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsInfant Jesus College of Engineering and TechnologyTuticorinIndia
  2. 2.Department of PhysicsAditanar College of Arts and ScienceTiruchendurIndia
  3. 3.Department of PhysicsThe M.D.T Hindu CollegeTirunelveliIndia

Personalised recommendations