Skip to main content
Log in

First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Resistance change random access memories based on transition metal oxides had been recently proposed as promising candidates for the next generation of memory devices, due to their simplicity in composition and scaling capability. The resistance change phenomena had been observed in various materials, however the fundamental understanding of the switching mechanism and of its physical origin has not been agreed upon. We have employed first principles simulations based on density functional theory to elucidate the effect of oxygen vacancies on the electronic structure of rutile TiO2 and NiO using the local density and generalized gradient approximations with correction of on-site Coulomb interactions (LDA + U for TiO2 and GGA + U for NiO). We find that an ordered oxygen vacancy filament induces several defect states within the band gap of both materials, and can lead to the defect-assisted electron transport. This state may account for the “ON”-state low resistance conduction observed experimentally in rutile TiO2 and NiO. As the filament structure is perturbed by oxygen ions moving into the ordered chain of vacancies under applied electric field, charges are trapped and the conductivity can be significantly reduced. We predict this partially disordered arrangement of vacancies may correspond to the “OFF”-state of the resistance change memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Chen A, Haddad S, Wu YC, Lan Z, Fang TN, Kaza S (2007) Appl Phys Lett 91:123517-1-3

    Google Scholar 

  2. Kim DC, Seo S, Ahn SE, Suh DS, Lee MJ, Park BH, Yoo IK, Baek IG, Kim HJ, Yim EK, Lee JE, Park SO, Kim HS, Chung UI, Moon JT, Ryu BI (2006) Appl Phys Lett 88:202102-1-3

    Google Scholar 

  3. Fujii T, Kawasaki M, Sawa A, Akoh H, Kawazoe Y, Tokura Y (2004) Appl Phys Lett 86:012107-1-3

    Google Scholar 

  4. Guo X, Schindler C, Menzel S, Waser R (2007) Appl Phys Lett 91:133513-1-3

    Google Scholar 

  5. Waser R, Dittmann R, Staikov G, Szot K (2009) Adv Mater 21:2632

    Article  CAS  Google Scholar 

  6. Strachan JP, Strukov DB, Borghetti J, Yang JJ, Medeiros-Ribeiro G, Williams RS (2011) Nanotechnology 22:254015-1-6

    Google Scholar 

  7. Kim KM, Jeong DS, Hwang CS (2011) Nanotechnology 22:254002-1-7

    Google Scholar 

  8. Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R (2011) Nanotechnology 22:254001-1-21

    Article  Google Scholar 

  9. Ielmini D, Nardi F, Cagli C (2011) Nanotechnology 22:254022-1-12

    Article  Google Scholar 

  10. Waser R, Aono M (2007) Nat Mater 6:833

    Article  CAS  Google Scholar 

  11. Szot K, Speier W, Carius R, Zastrow U, Beyer W (2002) Phys Rev Lett 88:075508-1-4

    Article  Google Scholar 

  12. Janousch M, Meijer GI, Staub U, Delley B, Karg SF, Andreasson BP (2007) Adv Mater 19:2232

    Article  CAS  Google Scholar 

  13. Poumellec B, Durham PJ, Guo GY (1991) J Phys Condens Mater 3:8195

    Article  CAS  Google Scholar 

  14. Park SG, Magyari-Köpe B, Nishi Y (2010) Phys Rev B 82:115109-1-9

    Google Scholar 

  15. Park SG, Magyari-Köpe B, Nishi Y (2011) IEEE Electron Device Lett 32:197

    Article  CAS  Google Scholar 

  16. Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS (2009) Nanotechnology 20:215201-1-9

    Google Scholar 

  17. Kwon DH, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH, Li XS, Park GS, Lee B, Han S, Kim M, Hwang CS (2010) Nat Nanotechnol 5:148

    Article  CAS  Google Scholar 

  18. Magyari-Köpe B, Tendulkar M, Park SG, Lee HD, Nishi Y (2011) Nanotechnology 22:254029-1-11

    Article  Google Scholar 

  19. Park SG, Magyari-Köpe B, Nishi Y (2011) Theoretical study of the resistance switching mechanism in rutile TiO2−x for ReRAM: the role of oxygen vacancies and hydrogen impurities. In: Techn. Digest of VLSI Symposium, p 46

  20. Kamiya K, Yang MY, Park SG, Magyari-Köpe B, Nishi Y, Niwa M, Shiraishi K (2012) Appl Phys Lett 100:073502-1-4

    Article  Google Scholar 

  21. Jameson JR, Fukuzumi Y, Wang Z, Griffin P, Tsunoda K, Meijer GI, Nishi Y (2007) Appl Phys Lett 91:112101-1-3

    Article  Google Scholar 

  22. Dong R, Lee DS, Pyun MB, Hasan M, Choi HJ, Jo MS, Seong DJ, Chang M, Heo SH, Lee JM, Park HK, Hwang H (2008) Appl Phys A Mater Sci Process 93:409

    Article  CAS  Google Scholar 

  23. Jeong HY, Lee JY, Choi SY (2010) Adv Funct Mater 20:3912

    Article  CAS  Google Scholar 

  24. Choi BJ, Jeong DS, Kim SK, Rohde C, Choi S, Oh JH, Kim HJ, Hwang CS, Szot K, Waser R, Reichenberg B, Tiedke S (2005) J Appl Phys 98:033715-1-10

    Google Scholar 

  25. Lee MJ, Han S, Jeon SH, Park BH, Kang BS, Ahn SE, Kim KH, Lee CB, Kim CJ, Yoo IK, Seo DH, Li XS, Park JB, Lee JH, Park Y (2009) Nano Lett 9:1476

    Article  CAS  Google Scholar 

  26. Simmons JG, Verderbe R (1967) Proc Royal Soc Lond A Math Phys Sci 301:77

    Article  CAS  Google Scholar 

  27. Tang H, Li F, Shinar J (1997) Appl Phys Lett 71:2560

    Article  CAS  Google Scholar 

  28. Sato Y, Kinoshita K, Aoki M, Sugiyama Y (2007) Appl Phys Lett 90:033503-1-3

    Google Scholar 

  29. Park C, Jeon SH, Chae SC, Han S, Park BH, Seo S, Kim DW (2008) Appl Phys Lett 93:042102-1-3

    Google Scholar 

  30. Lee CB, Kang BS, Benayad A, Lee MJ, Ahn SE, Kim KH, Stefanovich G, Park Y, Yoo IK (2008) Appl Phys Lett 93:042115-1-3

    Google Scholar 

  31. Lee SR, Kim HM, Bak JH, Park YD, Char K, Park HW, Kwon DH, Kim M, Kim DC, Seo S, Li XS, Park GS, Jung R (2010) Jpn J Appl Phys 49:031102

    Article  Google Scholar 

  32. Lee HD, Magyari-Köpe B, Nishi Y (2010) Phys Rev B 81:193202-1-4

    Google Scholar 

  33. Sinnott SB, Wood RF, Pennycook SJ (2000) Phys Rev B 61:15645

    Article  CAS  Google Scholar 

  34. Glassford KM, Chelikowsky JR (1992) Phys Rev B 46:1284

    Article  CAS  Google Scholar 

  35. Lee C, Ghosez P, Gonze X (1994) Phys Rev B 50:13379

    Article  CAS  Google Scholar 

  36. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  37. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Phys Rev B 52:R5467

    Article  CAS  Google Scholar 

  38. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  39. Faleev SV, van Schilfgaarde M, Kotani T (2004) Phys Rev Lett 93:126406-1-4

    Article  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  42. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  43. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  44. Earle MD (1942) Phys Rev 61:56

    Article  CAS  Google Scholar 

  45. Cronemeyer DC (1959) Phys Rev 113:1222

    Article  CAS  Google Scholar 

  46. Chen J, Lin LB, Jing FQ (2001) J Phys Chem Solids 62:1257

    Article  CAS  Google Scholar 

  47. Cho E, Han S, Ahn HS, Lee KR, Kim SK, Hwang CS (2006) Phys Rev B 73:193202-1-4

    Google Scholar 

  48. Ramamoorthy M, Kingsmith RD, Vanderbilt D (1994) Phys Rev B 49:7709

    Article  CAS  Google Scholar 

  49. Janotti A, Varley JB, Rinke P, Umezawa N, Kresse G, Van de Walle CG (2010) Phys Rev B 81:085212-1-7

    Article  Google Scholar 

  50. Calzado CJ, Hernandez NC, Sanz JF (2008) Phys Rev B 77:045118-1-10

    Article  Google Scholar 

  51. Deskins NA, Dupuis M (2007) Phys Rev B 75:195212-1-10

    Article  Google Scholar 

  52. Janotti A, Segev D, Van de Walle CG (2006) Phys Rev B 74:045202-1-9

    Article  Google Scholar 

  53. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  54. Szot K, Speier W, Bihlmayer G, Waser R (2006) Nat Mater 5:312

    Article  CAS  Google Scholar 

  55. Park S, Ahn HS, Lee CK, Kim H, Jin H, Lee HS, Seo S, Yu J, Han S (2008) Phys Rev B 77:134103-1-7

    Google Scholar 

  56. Bosman AJ, Vandaal HJ, Knuvers GF (1965) Phys Lett 19:372

    Article  CAS  Google Scholar 

  57. Jung K, Seo H, Kim Y, Im H, Hong J, Park JW, Lee JK (2007) Appl Phys Lett 90:052104-1-3

    Google Scholar 

Download references

Acknowledgements

The Stanford Non-Volatile Memory Technology Research Initiative (NMTRI), and the Marco Focus Center (MSD) sponsored this study. The computational study was carried out using the National Nanotechnology Infrastructure Network’s Computational Cluster at Stanford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanka Magyari-Köpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magyari-Köpe, B., Park, S.G., Lee, HD. et al. First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides. J Mater Sci 47, 7498–7514 (2012). https://doi.org/10.1007/s10853-012-6638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6638-1

Keywords

Navigation