Journal of Materials Science

, Volume 47, Issue 24, pp 8352–8359 | Cite as

Grain boundary wetting in the NdFeB-based hard magnetic alloys

  • B. B. Straumal
  • Yu. O. Kucheev
  • I. L. Yatskovskaya
  • I. V. Mogilnikova
  • G. Schütz
  • A. N. Nekrasov
  • B. Baretzky
HTC 2012


Since the end of 1980s, NdFeB-based hard magnetic alloys have been the materials with the highest available magnetic performance. NdFeB-based magnets are produced either by liquid-phase sintering or by melt spinning. In the present investigation, NdFeB alloys quenched after annealing in the semi-liquid state are used to study the wetting of Nd2Fe14B grain boundaries by a Nd-rich liquid phase. It is shown that a transition from partial wetting to complete wetting occurs with increasing temperature. The results are compared with the data in the literature for NdFeB-based alloys processed by liquid-phase sintering. The relation between wetting properties and magnetic performance of these alloys is also discussed.


Contact Angle Complete Wetting Magnetic Performance Polycrystalline Solid Generic Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Allianz Industrie Forschung (project FE.5150.0028.4067), Max-Planck Institut für Intelligente Systeme (Stuttgart), the Programme of Creation and Development of the National University of Science and Technology ‘MISiS’, the Russian Foundation for Basic Research (grants 10-02-00086, 11-03-00029 and 11-08-90439) and the Ukrainian Fundamental Research State Fund (grant Φ28.2107) for their financial support.


  1. 1.
    Cahn JW (1977) J Chem Phys 66:3667Google Scholar
  2. 2.
    Ebner C, Saam WF (1977) Phys Rev Lett 38:1486Google Scholar
  3. 3.
    de Gennes PG (1985) Rev Mod Phys 57:827Google Scholar
  4. 4.
    Sullivan DE, Telo da Gama MM (1986) In: Croxton CA (ed) Fluid interfacial phenomena. Wiley, New YorkGoogle Scholar
  5. 5.
    Dietrich S (1988) In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 12. Academic Press, LondonGoogle Scholar
  6. 6.
    Schick M (1990) In: Charvolin J, Joanny J-F, Zinn-Justin J (eds) Liquids at interfaces (Les Houches Session XLVIII, 1988). Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Bonn D, Ross D (2001) Rep Prog Phys 64:1085Google Scholar
  8. 8.
    Passerone A, Eustathopoulos N, Desré P (1977) J Less-Common Met 52:37Google Scholar
  9. 9.
    Passerone A, Sangiorgi R, Eustathopoulos N (1982) Scripta Metall 16:547Google Scholar
  10. 10.
    Rabkin EI, Shvindlerman LS, Straumal BB (1991) Int J Mod Phys B 5:2989Google Scholar
  11. 11.
    Eustathopoulos N (1983) Int Met Rev 28:189Google Scholar
  12. 12.
    Straumal BB (2003) Grain boundary phase transitions. Nauka Publishers, Moscow (in Russian)Google Scholar
  13. 13.
    Straumal B, Muschik T, Gust W, Predel B (1992) Acta Metall Mater 40:939Google Scholar
  14. 14.
    Straumal B, Molodov D, Gust W (1995) Interface Sci 3:127Google Scholar
  15. 15.
    Straumal B, Gust W, Watanabe T (1999) Mater Sci Forum 294–296:411Google Scholar
  16. 16.
    Straumal BB, Gornakova AS, Kogtenkova OA, Protasova SG, Sursaeva VG, Baretzky B (2008) Phys Rev B 78:054202Google Scholar
  17. 17.
    Yeh C-H, Chang L-S, Straumal BB (2011) J Mater Sci 46:1557. doi: 10.1007/s10853-010-4961-y Google Scholar
  18. 18.
    Yeh C-H, Chang L-S, Straumal BB (2010) Mater Trans 51:1677Google Scholar
  19. 19.
    Gornakova AS, Straumal BB, Tsurekawa S, Chang L-S, Nekrasov AN (2009) Rev Adv Mater Sci 21:18Google Scholar
  20. 20.
    López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537Google Scholar
  21. 21.
    Protasova SG, Kogtenkova OA, Straumal BB, Zięba P, Baretzky B (2011) J Mater Sci 46:4349. doi: 10.1007/s10853-011-5322-1 Google Scholar
  22. 22.
    Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS (2010) J Mater Sci 45:2057. doi: 10.1007/s10853-009-4014-6 Google Scholar
  23. 23.
    Straumal BB, Kogtenkova OA, Straumal AB, Kuchyeyev YuO, Baretzky B (2010) J Mater Sci 45:4271. doi: 10.1007/s10853-010-4377-8 Google Scholar
  24. 24.
    Straumal BB, Protasova SG, Mazilkin AA, Myatiev AA, Straumal PB, Schütz G, Goering E, Baretzky B (2010) J Appl Phys 108:073923Google Scholar
  25. 25.
    Straumal BB, Myatiev AA, Straumal PB, Mazilkin AA, Protasova SG, Goering E, Baretzky B (2010) JETP Lett 92:396Google Scholar
  26. 26.
    Mazilkin AA, Abrosimova GE, Protasova SG, Straumal BB, Schütz G, Dobatkin SV, Bakai AS (2011) J Mater Sci 46:4336. doi: 10.1007/s10853-011-5304-3 Google Scholar
  27. 27.
    Straumal BB, Mazilkin AA, Protasova SG, Myatiev AA, Straumal PB, Goering E, Baretzky B (2011) Thin Solid Films 519:1192Google Scholar
  28. 28.
    Dietrich S, Schick M (1985) Phys Rev B 31:4718Google Scholar
  29. 29.
    Saam WF, Shenoy VB (1995) J Low Temp Phys 101:225Google Scholar
  30. 30.
    Shenoy VB, Saam WF (1995) Phys Rev Lett 75:4086Google Scholar
  31. 31.
    Dietrich S, Napiorkowski M (1991) Phys Rev A 43:1861Google Scholar
  32. 32.
    Indekeu JO, van Leeuwen JMJ (1995) Physica C 251:290Google Scholar
  33. 33.
    Indekeu JO, van Leeuwen JMJ (1997) Physica A 236:114Google Scholar
  34. 34.
    Boulter CJ, Clarysse F (1999) Phys Rev E 60:R2472Google Scholar
  35. 35.
    Ragil K, Meunier J, Broseta D, Indekeu JO, Bonn D (1996) Phys Rev Lett 77:1532Google Scholar
  36. 36.
    Shahidzadeh N, Bonn D, Ragil K, Broseta D, Meunier J (1998) Phys Rev Lett 80:3992Google Scholar
  37. 37.
    Ross D, Bonn D, Meunier J (1999) Nature 400:737Google Scholar
  38. 38.
    Pfohl T, Riegler H (1999) Phys Rev Lett 82:783Google Scholar
  39. 39.
    Bertrand E, Dobbs H, Broseta D, Indekeu JO, Bonn D, Meunier J (2000) Phys Rev Lett 85:1282Google Scholar
  40. 40.
    Rafaï S, Bonn D, Bertrand E, Meunier J, Weiss VC, Indekeu JO (2004) Phys Rev Lett 92:245701Google Scholar
  41. 41.
    Rafaï S, Bonn D, Meunier J (2005) Physica A 358:97Google Scholar
  42. 42.
    Semenov VN, Straumal BB, Glebovsky VG, Gust W (1995) J Cryst Growth 151:180Google Scholar
  43. 43.
    Rabkin EI, Semenov VN, Shvindlerman LS, Straumal BB (1991) Acta Metall Mater 39:627Google Scholar
  44. 44.
    Noskovich OI, Rabkin EI, Semenov VN, Straumal BB, Shvindlerman LS (1991) Acta Metall Mater 39:3091Google Scholar
  45. 45.
    Straumal BB, Noskovich OI, Semenov VN, Shvindlerman LS, Gust W, Predel B (1992) Acta Metall Mater 40:795Google Scholar
  46. 46.
    Chang L-S, Rabkin E, Straumal BB, Baretzky B, Gust W (1999) Acta Mater 47:4041Google Scholar
  47. 47.
    Chang L-S, Rabkin E, Straumal BB, Hoffmann S, Baretzky B, Gust W (1998) Def Diff Forum 156:135Google Scholar
  48. 48.
    Schölhammer J, Baretzky B, Gust W, Mittemeijer E, Straumal B (2001) Interface Sci 9:43Google Scholar
  49. 49.
    Straumal BB, Mazilkin AA, Kogtenkova OA, Protasova SG, Baretzky B (2007) Phil Mag Lett 87:423Google Scholar
  50. 50.
    Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Acta Mater 55:3131Google Scholar
  51. 51.
    Luo J, Gupta VK, Yoon DH, Meyer HM (2005) Appl Phys Lett 87:231902Google Scholar
  52. 52.
    Luo J, Dillon SJ, Harmer MP (2009) Microsc Today 17:22Google Scholar
  53. 53.
    Cho J, Wang CM, Chan HM, Rickman JM, Harmer MP (2002) J Mater Sci 37:59. doi: 10.1023/A:1013185506017 Google Scholar
  54. 54.
    Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208Google Scholar
  55. 55.
    Dillon SJ, Harmer MP (2007) Acta Mater 55:5247Google Scholar
  56. 56.
    Dillon SJ, Harmer MP (2008) J Eur Ceram Soc 28:1485Google Scholar
  57. 57.
    Pezzotti G, Nakahira A, Tajika M (2000) J Eur Ceram Soc 20:1319Google Scholar
  58. 58.
    Furukawa Y, Sakurai O, Shinozaki K, Mizutani N (1996) J Ceram Soc Jpn 104:900Google Scholar
  59. 59.
    Elfwing M, Osterlund R, Olsson E (2000) J Am Ceram Soc 83:2311Google Scholar
  60. 60.
    Wang H, Chiang Y-M (1998) J Am Ceram Soc 81:89Google Scholar
  61. 61.
    Tanaka I, Kleebe HJ, Cinibuluk MK, Bruley J, Clarke DR, Ruhle M (1998) J Am Ceram Soc 77:911Google Scholar
  62. 62.
    Baram M, Kaplan WD (2006) J Mater Sci 41:7775. doi: 10.1007/s10853-006-0897-7 Google Scholar
  63. 63.
    Baram M, Chatain D, Kaplan WD (2011) Science 332:206Google Scholar
  64. 64.
    Scheu C, Dehm G, Kaplan WD (2001) J Am Ceram Soc 84:623Google Scholar
  65. 65.
    Avishai A, Kaplan WD (2005) Acta Mater 53:1571Google Scholar
  66. 66.
    Avishai A, Scheu C, Kaplan WD (2005) Acta Mater 53:1559Google Scholar
  67. 67.
    Avishai A, Kaplan WD (2004) Zt Metallkde 95:266Google Scholar
  68. 68.
    Baram M, Garofalini SH, Kaplan WD (2011) Acta Mater 59:5710Google Scholar
  69. 69.
    Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS, Straumal BB, Gust W (1995) Phil Mag Lett 72:361Google Scholar
  70. 70.
    Valiev RZ, Murashkin MY, Kilmametov A, Straumal BB, Chinh NQ, Langdon TG (2010) J Mater Sci 45:4718. doi: 10.1007/s10853-010-4588-z Google Scholar
  71. 71.
    Straumal BB, Sluchanko NE, Gust W (2001) Defect Diffusion Forum 188–190:185Google Scholar
  72. 72.
    Islam SH, Qu X, He X (2007) Powder Metall 50:11Google Scholar
  73. 73.
    Wei DQ, Meng QC, Jia DC (2007) Ceram Int 33:221Google Scholar
  74. 74.
    Solek KP, Kuziak RM, Karbowniczek M (2007) Arch Metall Mater 52:25Google Scholar
  75. 75.
    Ji ZS, Hu ML, Zheng XP (2007) J Mater Sci Technol 23:247Google Scholar
  76. 76.
    Shatilla YA, Loewen EP (2005) Nucl Technol 151:239Google Scholar
  77. 77.
    Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y (1984) J Appl Phys 55:2083Google Scholar
  78. 78.
    Yu LQ, Zhong XL, Zhang YP, Yan YG, Zhen YH, Zakotnik M (2011) J Magn Magn Mater 323:1152Google Scholar
  79. 79.
    Matsuura Y, Hirosawa Y, Yamamoto H, Fujimura S, Sagawa M, Osamura K (1985) Jpn J Appl Phys 24:L635Google Scholar
  80. 80.
    Schneider G, Henig E-T, Petzow G, Stadelmaier HH (1986) Zt Metallkunde 77:755Google Scholar
  81. 81.
    Knoch KG, Reinsch B, Petzow G (1994) Zt Metallkunde 85:5Google Scholar
  82. 82.
    Barbosa LP, Takiishi H, Faria RN (2004) J Magn Magn Mater 268:232Google Scholar
  83. 83.
    Madaah Hosseini HR, Kianvash A (2004) J Magn Magn Mater 281:92Google Scholar
  84. 84.
    Yue M, Zhang JX, Liu WO, Wang GP (2004) J Magn Magn Mater 271:364Google Scholar
  85. 85.
    Yue M, Liu X, Xiao Y, Zhang JX (2004) J Magn Magn Mater 269:227Google Scholar
  86. 86.
    Pei W, He C, Lian F, Zhou G, Yang H (2002) J Magn Magn Mater 239:475Google Scholar
  87. 87.
    Gabay AM, Zhang Y, Hadjipanais GC (2002) J Magn Magn Mater 238:226Google Scholar
  88. 88.
    Yan M, Ni J, Ma T, Ahmad Z, Zhang P (2011) Mater Chem Phys 126:195Google Scholar
  89. 89.
    Wu Y, Ni J, Ma T, Yan M (2010) Physica B 405:3303Google Scholar
  90. 90.
    Ni JJ, Ma TY, Cui XG, Wu YR, Yan M (2010) J Alloys Compd 502:346Google Scholar
  91. 91.
    Yu LQ, Zhang YP, Fu QT (2009) Adv Mater Res 79–82:1043Google Scholar
  92. 92.
    Corfield MR, Harris IR, Williams AJ (2010) J Magn Magn Mater 322:36Google Scholar
  93. 93.
    Li WF, Ohkubo T, Hono K, Sagawa M (2009) J Magn Magn Mater 321:1100Google Scholar
  94. 94.
    Cui XG, Yan M, Ma TY, Yu LQ (2008) Physica B 403:4182Google Scholar
  95. 95.
    Mo W, Zhang L, Shan A, Cao L, Wu J, Komuro M (2008) J Alloys Compd 461:351Google Scholar
  96. 96.
    Mo W, Zhang L, Liu Q, Shan A, Wu J, Komuro M, Shen L (2008) J Rare Earths 26:268Google Scholar
  97. 97.
    Yu LQ, Zhang J, Hu SQ, Han ZD, Yan M (2008) J Magn Magn Mater 320:1427Google Scholar
  98. 98.
    Mo W, Zhang L, Shan A, Cao L, Wu J, Komuro M (2007) Intermetallics 15:1483Google Scholar
  99. 99.
    Fidler J (1985) IEEE Trans Magn 21:1955Google Scholar
  100. 100.
    Kronmüller H (2007) Handbook of magnetism and advanced magnetic materials. Wiley, ChichesterGoogle Scholar
  101. 101.
    Komuro M, Satsu Y, Suzuki H (2010) Mater Sci Forum 638–642:1357Google Scholar
  102. 102.
    Ma Y, Liu Y, Li J, Li C, Chu L (2010) J Magn Magn Mater 322:2419Google Scholar
  103. 103.
    Zern A, Seeger M, Bauer J, Kronmüller H (1998) J Magn Magn Mater 184:89Google Scholar
  104. 104.
    Li S, Gu B, Bi H, Tian Z, Xie G, Zhu Y, Du Y (2002) J Appl Phys 19:7514Google Scholar
  105. 105.
    Liu ZW, Huang HY, Gao XX, Yu HY, Zhong XC, Zhu J, Zeng DC (2011) J Phys D 44:025003Google Scholar
  106. 106.
    Thielsch J, Hinz D, Schultz L, Gutfleisch O (2010) J Magn Magn Mater 322:3208Google Scholar
  107. 107.
    Stolyarov VV, Gunderov DV, Popov AG, Puzanova TZ, Raab GI, Yavari AR, Valiev RZ (2002) J Magn Magn Mater 242–245:1399Google Scholar
  108. 108.
    Stolyarov VV, Gunderov DV, Valiev RZ, Popov AG, Gaviko VS, Ermolenko AS (1999) J Magn Magn Mater 196–197:166Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    • 3
    • 5
  • Yu. O. Kucheev
    • 1
    • 2
  • I. L. Yatskovskaya
    • 1
  • I. V. Mogilnikova
    • 1
    • 2
  • G. Schütz
    • 3
  • A. N. Nekrasov
    • 4
  • B. Baretzky
    • 5
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.National University of Science and Technology “MISiS”MoscowRussia
  3. 3.Max-Planck Institut für Intelligente Systeme (Former Institut für Metallforschung)StuttgartGermany
  4. 4.Institute of Experimental MineralogyRussian Academy of SciencesMoscowRussia
  5. 5.Karlsruher Institut für Technologie (KIT), Institut für NanotechnologieEggenstein-LeopoldshafenGermany

Personalised recommendations