Journal of Materials Science

, Volume 47, Issue 21, pp 7615–7620 | Cite as

Role of correlation and relativistic effects in MAX phases

  • Weiwei Sun
  • Wei Luo
  • Rajeev Ahuja
First Principles Computations


We have performed the ab initio calculations to study the role of correlation and relativistic effects in MAX phases. As of now, there are more than 50 MAX phases reported in the literature; however, we have chosen two MAX phases, namely Cr2AlC and Ta2AlC, as representatives of MAX phases for our study as they are very poorly described from calculation point of view. Our results show that correlation effects are very important to understand the electronic and mechanical properties of Cr2AlC, but not so important for Ta2AlC. We have also studied the relativistic effects on Ta2AlC and our calculations show that going from scalar to fully relativistic effects does not have any significant effect on the electronic and mechanical properties of Ta2AlC. We conclude that Ta2AlC is a weakly correlated system, whereas Cr2AlC is a strongly correlated system. Further experiments are needed to explain the discrepancy between theory and experiments.


Relativistic Effect Bulk Modulus Generalize Gradient Approximation Correlation Effect Local Density Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Swedish Research Council (VR) and Carl Tryggers Stiftelse (CTS) for financial support and High Performance Computing Center North (HPC2N) for computational time. Weiwei Sun is grateful to the China Scholarship Council (CSC).


  1. 1.
    Barsoum MW, Zhen T, Kalidindi SR, Radovic M, Murugaiak A (2003) Nat Mater 2:107CrossRefGoogle Scholar
  2. 2.
    El-Raghy T, Zavaliangos A, Barsoum MW, Kalidindi SR (1997) J Am Ceram Soc 80:513CrossRefGoogle Scholar
  3. 3.
    Gilbert CJ, Bloyer DR, Barsoum MW, EI-Raghy T, Tomsia AP, Ritchie RO (2000) Scr Mater 42:761CrossRefGoogle Scholar
  4. 4.
    Barsoum MW (2000) Prog Solid State Chem 28:201CrossRefGoogle Scholar
  5. 5.
    Barsoum MW, Radovic M (2011) Annu Rev Mater Res 41:227CrossRefGoogle Scholar
  6. 6.
    Riedel R, Chen I-W (2010) Ceramics science and technology. Wiley, WeinheimGoogle Scholar
  7. 7.
    Palmquist JP et al (2004) Phys Rev B 70:165401CrossRefGoogle Scholar
  8. 8.
    Ahuja R et al (2000) Appl Phys Lett 76:2226CrossRefGoogle Scholar
  9. 9.
    Fang CM, Ahuja R, Eriksson O (2007) J Appl Phys 101:013511CrossRefGoogle Scholar
  10. 10.
    Schneider JM, Sun ZM, Mertens R, Uestel F, Ahuja R (2004) Solid State Commun 130:445CrossRefGoogle Scholar
  11. 11.
    Hu CF, He LF, Zhang J, Bao YW, Wang JY, Li MS, Zhou YC (2008) J Eur Ceram Soc 28:1679CrossRefGoogle Scholar
  12. 12.
    Gupta S, Filimonov D, Barsoum MW (2006) J Am Ceram Soc 89:2974Google Scholar
  13. 13.
    Jeitschko W, Nowotny H, Benesovsky F (1963) Monatsch Chem 94:1198CrossRefGoogle Scholar
  14. 14.
    Du YL et al (2011) J Appl Phys 109:063707CrossRefGoogle Scholar
  15. 15.
    Wang J, Zhou Y (2004) Phys Rev B 69:214111CrossRefGoogle Scholar
  16. 16.
    Sun ZM et al (2004) Solid State Commun 129:589–592CrossRefGoogle Scholar
  17. 17.
    Qian Xukun et al (2011) J Phys Chem Solids 72:954–956CrossRefGoogle Scholar
  18. 18.
    Kress G, Hafner H (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  19. 19.
    Kress G, Hafner H (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  20. 20.
    Koepernik K, Eschrig H (1999) Phys Rev B 59:1743CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  25. 25.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505CrossRefGoogle Scholar
  26. 26.
    Koepernik K, Velicky B, Hayn R, Eschrig H (1997) Phys Rev B 55:5717CrossRefGoogle Scholar
  27. 27.
    Opahle I, Koepernik K, Eschrig H (1999) Phys Rev B 60:14035CrossRefGoogle Scholar
  28. 28.
    Murnaghan FD (1944) Proc Natl Acad Sci 30:244CrossRefGoogle Scholar
  29. 29.
    Ramzan M, Lebègue S, Ahuja R (2011) Phys Status Solid Rapid Res Lett 5:122CrossRefGoogle Scholar
  30. 30.
    Manoun B, Gulve RP, Saxena SK, Gupta S, Barsoum MW, Zha CS (2006) Phys Rev B 73:024110CrossRefGoogle Scholar
  31. 31.
    Manoun B et al (2006) Phys Rev B 73:024110CrossRefGoogle Scholar
  32. 32.
    Sasioglu E, Friedrich C, Blügel S (2011) Phys Rev B 83:121101CrossRefGoogle Scholar
  33. 33.
    Voigt W, der Kristallphysik Lehrbuch (1928) Taubner, LeipzigGoogle Scholar
  34. 34.
    Reuss A, Angew Z (1929) Math Mech 9:55Google Scholar
  35. 35.
    Palmquist J-P et al (2004) Phys Rev B 70:165401CrossRefGoogle Scholar
  36. 36.
    Turchi PEA, Gonis A, Drchal V, Kudrnovský J (2001) Phys Rev B 64:085112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Applied Material Physics, Department of Material Science and EngineeringKTH-Royal Institute of TechnologyStockholmSweden
  2. 2.Condensed Matter Theory Group, Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations