Advertisement

Journal of Materials Science

, Volume 47, Issue 18, pp 6665–6672 | Cite as

Polymerization of methacrylate resins photoinitiated by camphorquinone and bulky amine-functionalized silsesquioxanes

  • Ignacio E. dell’Erba
  • Silvana V. Asmussen
  • Walter F. Schroeder
  • Claudia I. Vallo
Article

Abstract

Polyhedral oligomeric silsesquioxanes (SSQO) functionalized with bulky amino groups were prepared by a two-stage synthesis procedure. In a first stage, a modified organotrimethoxysilane was synthesized by reacting 1 mol of N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane with 3 mol of 1,2-epoxy-3-phenoxypropane. The second stage consisted of the hydrolytic condensation of the modified silane catalyzed by formic acid. Methacrylate resins were activated for visible light polymerization by the addition of camphorquinone (CQ) in combination with different mass fractions of SSQO. The progress of monomer conversion versus irradiation time showed that the CQ/SSQO pair is an efficient photoinitiator system because a fast reaction and high conversion results from 60 s irradiation at 600 mW/cm2. The SSQO were incorporated up to 22 wt% in the methacrylate resin without compromising the flexural or the compressive properties of the final material.

Keywords

Photopolymerization Flexural Modulus Compressive Property Photolysis Product Polyhedral Oligomeric Silsesquioxanes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support provided by the CONICET and the ANPCyT is gratefully acknowledged. The authors are grateful to Esstech for the generous donation of the Bis-GMA monomer used in this study.

References

  1. 1.
    Schroeder W, Vallo C (2007) Dent Mater 23:1313CrossRefGoogle Scholar
  2. 2.
    Jakubiak J, Allonas X, Fouassier JP, Sionkowska A, Andrzejewska E, Linden LA et al (2003) Polymer 44:5219CrossRefGoogle Scholar
  3. 3.
    Cook WD (1992) Polymer 33:600CrossRefGoogle Scholar
  4. 4.
    Schroeder W, Cook WD, Vallo CI (2008) Dent Mater 24:686CrossRefGoogle Scholar
  5. 5.
    Wua G, Nie J (2007) Dent Mater 23:623CrossRefGoogle Scholar
  6. 6.
    Asmussen SV, Vallo CI (2011) J Mater Sci 46:2308. doi: 10.1007/s10853-010-5074-3 CrossRefGoogle Scholar
  7. 7.
    Asmussen SV, Vallo CI (2010) Eur Polym J 46:1815CrossRefGoogle Scholar
  8. 8.
    Fong H, Dickens SH, Flaim GM (2005) Dent Mater 21:520CrossRefGoogle Scholar
  9. 9.
    Xu K, Zhou S, Wu L (2009) J Mater Sci 44:1613. doi: 10.1007/s10853-008-3231-8 CrossRefGoogle Scholar
  10. 10.
    Patel S, Bandyopadhyay A, Vijayabaskar V, Bhowmick A (2006) J Mater Sci 41:927. doi: 10.1007/s10853-006-6576-x CrossRefGoogle Scholar
  11. 11.
    Kuo SW, Chang FC (2011) Prog Polym Sci 36:1649CrossRefGoogle Scholar
  12. 12.
    Briche S, Riassetto D, Gastaldin C, Lamarle C, Dellea O, Jamon D, Pernot E, Labeau M, Ravel G, Langlet M (2008) J Mater Sci 43:5809. doi: 10.1007/s10853-008-2884-7 CrossRefGoogle Scholar
  13. 13.
    Asmussen S, Dell’ Erba I, Schroeder W, Vallo CI (2012) Eur Polym J 48:309CrossRefGoogle Scholar
  14. 14.
    Oubaha M, Copperwhite R, Boothman C, Ovsianikov A, Kiyan R et al (2011) J Mater Sci 46:400. doi: 10.1007/s10853-010-4853-1 CrossRefGoogle Scholar
  15. 15.
    Stansbury J, Dickens S (2001) Dent Mater 17:71CrossRefGoogle Scholar
  16. 16.
    Fasce DP, Williams RJJ, Mechin F, Pascault JP, Llauro MF, Petiaud R (1999) Macromolecules 32:4757CrossRefGoogle Scholar
  17. 17.
    Fasce DP, Williams RJJ, Erra-Balsells R, Ishikawa Y, Nonami H (2001) Macromolecules 34:3534CrossRefGoogle Scholar
  18. 18.
    Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri A, Nonami H, Carmen C, Riccardi C, Williams RJJ (2000) Macromolecules 33:1940CrossRefGoogle Scholar
  19. 19.
    Sharp K (1994) J Sol-Gel Sci Technol 2:35CrossRefGoogle Scholar
  20. 20.
    Miller G, Gou I, Narayanan V, Scranton AJ (2002) J Polym Sci A 40:793CrossRefGoogle Scholar
  21. 21.
    Kenning NS, Dane Kriks, El-Maazawi M, Scranton A (2006) Polym Int 57:994CrossRefGoogle Scholar
  22. 22.
    Kenning NS, Ficel BA, Hoppe CC, Scranton A (2008) Polym Int 57:1134CrossRefGoogle Scholar
  23. 23.
    Asmussen S, Arenas G, Cook WD, Vallo CI (2009) Eur Polym J 45:515CrossRefGoogle Scholar
  24. 24.
    Asmussen S, Arenas G, Cook WD, Vallo CI (2009) Dent Mater 25:1603CrossRefGoogle Scholar
  25. 25.
    Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New York, p 222Google Scholar
  26. 26.
    Vallo CI (2000) Polym Int 49:831CrossRefGoogle Scholar
  27. 27.
    Vallo CI (2002) Polym Test 21:793CrossRefGoogle Scholar
  28. 28.
    Giannotti MI, Galante MJ, Oyanguren PA, Vallo CI (2003) Polym Test 2:429CrossRefGoogle Scholar
  29. 29.
    Kopesky ET, McKinley GH, Cohen RE (2006) Polymer 47:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ignacio E. dell’Erba
    • 1
  • Silvana V. Asmussen
    • 1
  • Walter F. Schroeder
    • 1
  • Claudia I. Vallo
    • 1
  1. 1.Institute of Materials Science and Technology (INTEMA)University of Mar del Plata, CONICETMar del PlataArgentina

Personalised recommendations