Journal of Materials Science

, Volume 47, Issue 17, pp 6402–6419 | Cite as

Microstructure and texture evolution during accumulative roll bonding of aluminium alloys AA2219/AA5086 composite laminates

  • Shibayan Roy
  • B. R. Nataraj
  • Satyam Suwas
  • S. Kumar
  • K. Chattopadhyay


Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.


Texture Component Texture Evolution Accumulative Roll Bonding High Angle Boundary Alloy Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank The Boeing Company, USA, for providing the financial support and the required material for the present study. The Institute Nano-science Initiative (INI) and Institute X-ray Facility at Indian Institute of Science, Bangalore, India are also acknowledged for providing the research facilities related to this study. We are grateful to Dr. K. K. Sankaran of The Boeing Company for his help and support during all stages of this study. The assistance offered by Mr. Subhasis Sinha, Mr. Arun Dinesh P. and Mr. Suhas Karanth during various experiments is also acknowledged.


  1. 1.
    Williams JC, Starke EA Jr (2003) Acta Mater 51:5775CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  3. 3.
    Skrotzki W, Scheerbaum N, Oertel C-G, Brokmeier H-G, Suwas S, Tóth LS (2006) Mater Sci Forum 503–504:99CrossRefGoogle Scholar
  4. 4.
    Richert J, Richert M (1986) Aluminium 62:604Google Scholar
  5. 5.
    Suwas S, Toth LS, Fundenberger J-J, Eberhardt A (2005) Solid State Phenom 105:357CrossRefGoogle Scholar
  6. 6.
    Skrotzki W, Scheerbaum N, Oertel C-G, Brokmeier H-G, Suwas S, Tóth LS (2007) Acta Mater 55(7):2211CrossRefGoogle Scholar
  7. 7.
    Suwas S, Arruffat-Massion R, Tóth LS, Fundenberger J-J, Beausir B (2009) Mater Sci Eng A 520:134CrossRefGoogle Scholar
  8. 8.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344CrossRefGoogle Scholar
  9. 9.
    Yin J, Lu J, Ma H, Zhang P (2004) J Mater Sci 39:2851. doi: 10.1023/B:JMSC.0000021463.83899.b3 CrossRefGoogle Scholar
  10. 10.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scripta Mater 39:1221CrossRefGoogle Scholar
  11. 11.
    Tsuji N, Iwata T, Sato M, Fujimoto S, Minamino Y (2004) Sci Tech Adv Mater 5:173CrossRefGoogle Scholar
  12. 12.
    Xing ZP, Kang SB, Kim HW (2002) J Mater Sci 37:717. doi: 10.1023/A:1013879528697 CrossRefGoogle Scholar
  13. 13.
    Tsuji N, Shiotsuki K, Utsunomiya H, Saito Y (1999) Mater Sci Forum 304:73CrossRefGoogle Scholar
  14. 14.
    Lee SH, Saito Y, Sakai T, Utsunomiya H (2002) Mater Sci Eng A 325:228CrossRefGoogle Scholar
  15. 15.
    Hidalgo P, Cepeda-Jiménez CM, Ruano OA, Carreño F (2010) Metall Mater Trans A 41:758CrossRefGoogle Scholar
  16. 16.
    Karlik M, Homolaa P, Slámová M (2004) J Alloys Compd 378:322CrossRefGoogle Scholar
  17. 17.
    Wei KX, Wei W, Du QB, Hu J (2009) Mater Sci Eng A 525:55CrossRefGoogle Scholar
  18. 18.
    Ghosh-Chowdhury S, Srivastava VC, Ravikumar B, Soren S (2006) Scripta Mater 54:1691CrossRefGoogle Scholar
  19. 19.
    Ghosh-Chowdhury S, Dutta A, Ravikumar B, Kumar (2006) Mater Sci Eng A 428:351CrossRefGoogle Scholar
  20. 20.
    Kim H-W, Kang S-B, Tsuji N, Minamino Y (2005) Acta Mater 53:1737CrossRefGoogle Scholar
  21. 21.
    Quadir MZ, Ferry M, Munroe PR (2011) Scripta Mater 64:1106CrossRefGoogle Scholar
  22. 22.
    Eizadjou M, Kazemi-Talachi A, Danesh-Manesh H, Shakur-Shahabi H, Janghorban K (2008) Compos Sci Technol 68:2003CrossRefGoogle Scholar
  23. 23.
    Wu K, Chang H, Maawad E, Gan WM, Brokmeier HG, Zheng MY (2010) Mater Sci Eng A 527:3073CrossRefGoogle Scholar
  24. 24.
    Mozaffari A, Danesh-Manesh H, Janghorban K (2010) J Alloys Compd 489:103CrossRefGoogle Scholar
  25. 25.
    Min G, Lee J-M, Kang S-B, Kim H-W (2006) Mater Letters 60:3255CrossRefGoogle Scholar
  26. 26.
    Yang D, Cizek P, Hodgson P, Wen C (2010) Scripta Mater 62:321CrossRefGoogle Scholar
  27. 27.
    Danesh-Manesh H, Shakur-Shahabi H (2009) J Alloys Compd 476:292CrossRefGoogle Scholar
  28. 28.
    Topic I, Höppel HW, Staud D, Merklein M, Geiger M, Göken M (2008) Adv Eng Mater 10:1101CrossRefGoogle Scholar
  29. 29.
    Topic I, Höppel HW, Göken M (2008) J Mater Sci 43:7320. doi: 10.1007/s10853-008-2754-3 CrossRefGoogle Scholar
  30. 30.
    Topic I, Höppel HW, Göken M (2009) Mater Sci Eng A 503:163CrossRefGoogle Scholar
  31. 31.
    Topic I, Höppel HW, Göken M (2008) Mater Sci Forum 584–586:833CrossRefGoogle Scholar
  32. 32.
    Scharnweber J, Skrotzki W, Oertel C-G, Brokmeier H-G, Höppel HW, Topic I, Jaschinski J (2010) Adv Eng Mater 12:989CrossRefGoogle Scholar
  33. 33.
    Hausöl T, Höppel HW, Göken M (2010) J Mater Sci 45:4733. doi: 10.1007/s10853-010-4678-y CrossRefGoogle Scholar
  34. 34.
    Hausöl T, Höppel HW, Göken M (2010) Mater Sci Forum 667–669:217CrossRefGoogle Scholar
  35. 35.
    Venkatachalam P, Roy S, Ravisankar B, Paul V, Vijayalakshmi M, Suwas S (2011) J Mater Sci 46:6518. doi: 10.1007/s10853-011-5598-1 CrossRefGoogle Scholar
  36. 36.
    Sarkar A, Roy S, Suwas S (2011) Mater Charact 62:35CrossRefGoogle Scholar
  37. 37.
    Roy S, Dhinwal SS, Suwas S, Kumar S, Chattopadhyay K (2011) Mater Sci Eng A 528:8469CrossRefGoogle Scholar
  38. 38.
    Ray RK (1995) Acta Metall Mater 43(10):3861CrossRefGoogle Scholar
  39. 39.
    Leffers T, Ray RK (2009) Prog Mater Sci 54:351CrossRefGoogle Scholar
  40. 40.
    Hirsch J, Lücke K (1988) Acta Metall Mater 36:2863CrossRefGoogle Scholar
  41. 41.
    Engler O, Hirsch J, Lücke K (1989) Acta Metall 37:2743CrossRefGoogle Scholar
  42. 42.
    Panchanadeeswaran S, Field DP (1995) Acta Metall Mater 43:1683CrossRefGoogle Scholar
  43. 43.
    Duckham A, Knutsen RD, Engler O (2001) Acta Mater 49:2739CrossRefGoogle Scholar
  44. 44.
    Liu WC, Morris JG (2005) Scripta Mater 52:1317CrossRefGoogle Scholar
  45. 45.
    Engler O, Lücke K (1992) Scripta Metall 27:1527CrossRefGoogle Scholar
  46. 46.
    Vatne HE, Shahani R, Nes E (1996) Acta Mater 44:4447CrossRefGoogle Scholar
  47. 47.
    Liu WC, Man CS, Raabe D, Morris JG (2005) Scripta Mater 53:1273CrossRefGoogle Scholar
  48. 48.
    Raabe D (1995) Acta Metall Mater 43:1023CrossRefGoogle Scholar
  49. 49.
    Eizadjou M, Danesh-Manesh H, Janghorban K (2009) J Alloys Compd 474:406CrossRefGoogle Scholar
  50. 50.
    Pirgazi H, Akbarzadeha A (2009) Mater Sci Technol 25(5):625CrossRefGoogle Scholar
  51. 51.
    Hatch JE (2005) Aluminium: properties and physical metallurgy. ASM International, Metals ParkGoogle Scholar
  52. 52.
    Roy S, Nataraj BR, Suwas S, Kumar S, Chattopadhyay K (2012) Mater Des 36:529CrossRefGoogle Scholar
  53. 53.
    Zander J, Sandström R, Vitos L (2007) Compos Mater Sci 41:86CrossRefGoogle Scholar
  54. 54.
    Ebrahimi F, Ahmed Z, Li H (2004) Appl Phys Lett 85:3749CrossRefGoogle Scholar
  55. 55.
    Ghosh-Chowdhury S (2005) Scripts Mater 52:99CrossRefGoogle Scholar
  56. 56.
    Humphreys FJ (1997) Acta Mater 45:4231CrossRefGoogle Scholar
  57. 57.
    Davies CKL, Sagar V, Stevens RN (1973) Acta Metall 21:1343CrossRefGoogle Scholar
  58. 58.
    Mahesh S (2006) Acta Mater 54:4565CrossRefGoogle Scholar
  59. 59.
    Huang X, Hansen N (1997) Scripts Mater 37:1CrossRefGoogle Scholar
  60. 60.
    Heason CP, Prangnell PB (2002) Mater Sci Forum 408–412:733CrossRefGoogle Scholar
  61. 61.
    Cao F, Cerreta EK, Trujillo CP, Gray GT III (2008) Acta Mater 56:5804CrossRefGoogle Scholar
  62. 62.
    Roy S, Suwas S, Tamirisakandala S, Srinivasan R, Miracle DB (2012) Mater Sci Eng A 540:152CrossRefGoogle Scholar
  63. 63.
    Morii K, Mecking H, Nakayama Y (1985) Acta Metall 33:379CrossRefGoogle Scholar
  64. 64.
    Shih-Chin C, Duen-Huei H, Yun-Kie C (1989) Acta Metall 37:2031CrossRefGoogle Scholar
  65. 65.
    Hosford WF (2005) Mechanical behavior of materials. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shibayan Roy
    • 1
  • B. R. Nataraj
    • 1
  • Satyam Suwas
    • 1
  • S. Kumar
    • 1
  • K. Chattopadhyay
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations