Advertisement

Journal of Materials Science

, Volume 47, Issue 17, pp 6354–6365 | Cite as

The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films

  • Corneliu Hamciuc
  • Elena Hamciuc
  • Lidia Okrasa
  • Yuri Kalvachev
Article

Abstract

Zeolite L, with the ratio Si/Al = 4, was prepared by hydrothermal method and used to obtain composite films based on a polyimide matrix having pendant carboxylic groups. The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films was studied. The films were prepared by casting a suspension resulting from direct mixing of a poly(amic acid) (PAA) solution and zeolite L particles onto glass plates, followed by thermal imidization under controlled temperature conditions. The PAA was synthesized by solution polycondensation of a mixture of two diamines, 3,5-diaminobenzoic acid and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (molar ratio 1:3), with 4,4′-oxydiphthalic anhydride, using N-methyl-2-pyrrolidone as solvent. To improve the compatibility between organic and inorganic phases, the surface of zeolite particles was modified by treating with 3-aminopropyltriethoxysilane. The surface morphology of the composite films investigated by scanning electron microscopy showed good compatibility between filler and polymer matrix. The films were flexible, tough, and exhibited high-thermal stability, having the initial decomposition temperature above 450 °C. Dynamic mechanical analysis and dielectric spectroscopy revealed sub-glass transitions, γ and β, and an α relaxation corresponding to the segmental motions above the glass transition temperature. The values of the dielectric constant at 10 kHz and 200 °C were in the range of 3.3–4.2.

Keywords

Zeolite Polyimide Composite Film Dynamic Mechanical Analysis Initial Decomposition Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Dr. M. Cristea at “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania, for DMA analyses. Yu. Kalvachev gratefully acknowledges the financial support by the National Science Fund, Bulgaria (Grant DTK02-47).

References

  1. 1.
    Wilson D (1990) In: Wilson D, Stenzenberger HD, Hergenrother PM (eds) Polyimides. Chapman and Hall, New York, pp 187–226Google Scholar
  2. 2.
    Sroog CE (1991) Prog Polym Sci 16:561CrossRefGoogle Scholar
  3. 3.
    Sato M (1997) In: Olabisi O (ed) Handbook of thermoplastics. Marcel Dekker, New York, pp 665–699Google Scholar
  4. 4.
    de Abajo J, de la Campa JG (1999) Adv Polym Sci 140:23CrossRefGoogle Scholar
  5. 5.
    Mark JE (2006) Acc Chem Res 39:881CrossRefGoogle Scholar
  6. 6.
    Hamciuc E, Hamciuc C, Bacosca I, Cristea M, Okrasa L (2011) Polym Compos 32:846CrossRefGoogle Scholar
  7. 7.
    Hamciuc E, Hamciuc C, Ignat M (2010) High Perform Polym 22:225CrossRefGoogle Scholar
  8. 8.
    Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Water Res 38:3699CrossRefGoogle Scholar
  9. 9.
    Tao Y, Kanoh H, Abraham L, Kaneko K (2006) Chem Rev 106:896CrossRefGoogle Scholar
  10. 10.
    Pode V, Popovici E, Pode R, Georgescu V (2007) Rev Roum Chim 52:983Google Scholar
  11. 11.
    Rauch WL, Liu M (2003) J Mater Sci 38:4307. doi: 10.1023/A:1026331015093 CrossRefGoogle Scholar
  12. 12.
    Deng Y, Deng C, Qi D, Liu C, Liu J, Zhang X, Zhao D (2009) Adv Funct Mater 21:1377Google Scholar
  13. 13.
    Rimoli MG, Rabaioli MR, Melisi D, Curcio A, Mondello S (2008) J Biomed Mater Res 87A:156CrossRefGoogle Scholar
  14. 14.
    Doussineau T, Smaihi M, Mohr GJ (2009) Adv Funct Mater 19:117CrossRefGoogle Scholar
  15. 15.
    Lew CM, Cai R, Yan Y (2010) Acc Chem Res 43:210CrossRefGoogle Scholar
  16. 16.
    Kalvachev YuA, Hayashi T, Tsubota S, Haruta M (1999) J Catal 186:228CrossRefGoogle Scholar
  17. 17.
    Aksoy EA, Akata B, Bac N, Hasirci N (2007) J Appl Polym Sci 104:3378CrossRefGoogle Scholar
  18. 18.
    Clarizia C, Algieri C, Regina A, Drioli E (2008) Microporous Mesoporous Mater 115:67CrossRefGoogle Scholar
  19. 19.
    Lopez AC, Silva MP, Goncalves R, Pereira MF, Botelho G, Fonseca AM, Lanceros-Mendez S, Neves IC (2010) J Phys Chem 114:14446Google Scholar
  20. 20.
    Yuzay IE, Auras R, Selke S (2010) J Appl Polym Sci 115:2262CrossRefGoogle Scholar
  21. 21.
    Lee JH, Zapata P, Choi S, Meredith JC (2010) Polymer 51:5744CrossRefGoogle Scholar
  22. 22.
    Papathanassioua AN, Grammatikakis J, Sakellis I, Sakkopoulos S, Vitoratos E, Dalas E (2004) J Appl Phys 96:3883CrossRefGoogle Scholar
  23. 23.
    Papathanassiou AN, Grammatikakis J, Sakellis I, Sakkopoulos S, Vitoratos E, Dalas E (2005) Synth Met 150:145CrossRefGoogle Scholar
  24. 24.
    Sakellis I, Papathanassiou AN, Grammatikakis J (2009) J Appl Phys 105:064109CrossRefGoogle Scholar
  25. 25.
    Vankelecom IFJ, Merckx E, Luts M, Uytterhoeven JB (1995) J Phys Chem 99:13187CrossRefGoogle Scholar
  26. 26.
    Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, Cornelius CJ (2006) J Membr Sci 277:195CrossRefGoogle Scholar
  27. 27.
    Qiao X, Chung TS, Rajagolalan R (2006) Chem Eng Sci 61:6816CrossRefGoogle Scholar
  28. 28.
    Husain S, Koros WJ (2007) J Membr Sci 288:195CrossRefGoogle Scholar
  29. 29.
    Pechar TW, Kim S, Vaughan B, Marand E, Baranauskas V, Riffle J, Jeong HK, Tsapatsis M (2006) J Membr Sci 277:210CrossRefGoogle Scholar
  30. 30.
    Lee JH, Thio BJR, Bae TH, Meredith JC (2009) Langmuir 25:9101CrossRefGoogle Scholar
  31. 31.
    Patel R, Park JT, Hong HP, Kim JH, Min BR (2011) Polym Adv Technol 22:768CrossRefGoogle Scholar
  32. 32.
    Bakhtiari O, Mosleh S, Khosravi T, Mohammadi T (2011) Sep Sci Technol 46:2138CrossRefGoogle Scholar
  33. 33.
    Eichstadt AE, Ward TC, Bagwell MD, Farr IV, Dunson DL, McGrath JE (2002) Macromolecules 35:7561CrossRefGoogle Scholar
  34. 34.
    Comer AC, Heilman AL, Kalika DS (2010) Polymer 51:5245CrossRefGoogle Scholar
  35. 35.
    Comer AC, Kalika DS, Rowe BW, Freeman BD, Paul DR (2009) Polymer 50:891CrossRefGoogle Scholar
  36. 36.
    Coburn JC, Soper PD, Auman BC (1995) Macromolecules 28:3253CrossRefGoogle Scholar
  37. 37.
    Fragiadakis D, Logakis E, Pissis P, Kramarenko VYu, Shantalii TA, Karpova IL, Dragan KS, Privalko EG, Usenko AA, Privalko VP (2005) J Phys Conf Ser 10:139CrossRefGoogle Scholar
  38. 38.
    Musto P, Abbate M, Lavorgna M, Ragosta G, Scarinzi G (2006) Polymer 47:6172CrossRefGoogle Scholar
  39. 39.
    Hamciuc E, Hamciuc C, Olariu M (2010) Polym Eng Sci 50:520CrossRefGoogle Scholar
  40. 40.
    Hamciuc C, Hamciuc E, Olariu M, Ciobanu R (2010) Polym Int 59:668Google Scholar
  41. 41.
    Hamciuc C, Hamciuc E, Okrasa L (2011) Macromol Res 19:250CrossRefGoogle Scholar
  42. 42.
    Hamciuc C, Carja ID, Hamciuc E, Vlad-Bubulac T, Musteata VE (2011) High Perform Polym 23:362CrossRefGoogle Scholar
  43. 43.
    Hamciuc E, Hamciuc C, Bacosca I, Okrasa L (2011) Polym Eng Sci 51:2304CrossRefGoogle Scholar
  44. 44.
    Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Kkarger-Kocsis J (2011) Polym Int 60:1715CrossRefGoogle Scholar
  45. 45.
    Sadegh Hassani S, Salehirad F, Aghabozorg HR, Sobat Z (2010) Cryst Res Technol 45:183CrossRefGoogle Scholar
  46. 46.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierott RA, Rouquerol J, Siemieniewsa T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  47. 47.
    Chuang TH, Yang TCK, Chang AH (2004) Int J Polym Mater 53:465CrossRefGoogle Scholar
  48. 48.
    Lin BP, Pan Y, Qian Y, Yuan CW (2004) J Appl Polym Sci 94:2363CrossRefGoogle Scholar
  49. 49.
    Psarras GC, Manolakaki E, Tsangaris GM (2002) Compos A 33:375CrossRefGoogle Scholar
  50. 50.
    Lee HT, Chuang KR, Chen SA, Wei PK, Hsu JH, Fann W (1995) Macromolecules 28:7645CrossRefGoogle Scholar
  51. 51.
    Macedo TB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Corneliu Hamciuc
    • 1
  • Elena Hamciuc
    • 1
  • Lidia Okrasa
    • 2
  • Yuri Kalvachev
    • 3
  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  2. 2.Department of Molecular PhysicsTechnical University of LodzLodzPoland
  3. 3.Institute of Mineralogy and CrystallographySofiaBulgaria

Personalised recommendations