Journal of Materials Science

, Volume 47, Issue 17, pp 6276–6285 | Cite as

Performance enhancement induced by electrospinning of polymer electrolytes based on poly(methyl methacrylate-co-2-acrylamido-2-methylpropanesulfonic acid lithium)

  • Wei-Wei Cui
  • Dong-Yan Tang
  • Zai-lin Gong
  • Yu-Di Guo


A series of novel fibrous polymer electrolytes with high ionic conductivity based on electrospun poly(methyl methacrylate-co-2-acrylamido-2-methylpropanesulfonic acid lithium) (P(MMA-co-AMPSLi)) membranes were prepared and characterized. P(MMA-co-AMPSLi) was synthesized by free radical copolymerization of MMA and AMPS, followed by ion exchange of the H+ with Li+. The fibrous polymer electrolytes were fabricated by immersing the electrospun P(MMA-co-AMPSLi) membranes into the liquid electrolyte. Fourier transform infrared spectroscopy and 1H-nuclear magnetic resonance were used to characterize the structure of the copolymers. Thermogravimetric analysis was applied to investigate the thermal properties of the copolymers. Scanning electromicroscope was employed to observe the morphology of electrospun membranes before and after soaking the liquid electrolyte. AC impedance and linear sweep voltammetry were adopted to measure the electrochemical properties of the fibrous polymer electrolytes. The incorporation of the AMPSLi units effectively improved the electrospinnability of the copolymer, increased the dielectric constants of the electrospun membranes, and enhanced the dimensional stability by maintaining the pore structures even after the membranes absorbing large amounts of liquid electrolytes. As a result, the ionic conductivity of the polymer electrolytes increased with the increase in the molar ratio of AMPSLi units, and the highest ion conductivity was up to 4.12 × 10−3 S cm−1 at room temperature. Meanwhile, the polymer electrolytes studied in this work exhibited a sufficient electrochemical stability (up to 5.0 V) that allows the safe operation in lithium-ion batteries.


Ionic Conductivity Polymer Electrolyte Liquid Electrolyte Copolymer Composition Lithium Salt 



This work was supported by the National Natural Science Foundation of China (50675045) and Program for New Century Excellent Talents in University (NCET-08-0165).


  1. 1.
    Sato T, Morinaga T, Marukane S et al (2011) Adv Mater 23:4868CrossRefGoogle Scholar
  2. 2.
    Shukla N, Thakur AK (2010) J Mater Sci 45:4236. doi: 10.1007/s10853-010-4519-z CrossRefGoogle Scholar
  3. 3.
    Kim HT, Kim KB, Kim SW, Park JK (2000) Electrochim Acta 45:4001CrossRefGoogle Scholar
  4. 4.
    Raghavan P, Zhao XH, Kim JK et al (2008) Electrochim Acta 54:228CrossRefGoogle Scholar
  5. 5.
    Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008) J Membr Sci 325:957CrossRefGoogle Scholar
  6. 6.
    Rao MM, Liu JS, Li WS, Liang Y, Zhou DY (2008) J Membr Sci 322:314CrossRefGoogle Scholar
  7. 7.
    Rajendran S, Bama VS (2010) J Non-Cryst Solids 356:2764CrossRefGoogle Scholar
  8. 8.
    Li ZM, Wei JG, Shan F, Yang J, Wang XL (2008) J Polym Sci, Part B: Polym Phys 46:751CrossRefGoogle Scholar
  9. 9.
    He XM, Shi Q, Zhou X, Wan CR, Jiang CY (2005) Electrochim Acta 51:1069CrossRefGoogle Scholar
  10. 10.
    Stephan AM, Teeters D (2003) J Power Sources 119:460CrossRefGoogle Scholar
  11. 11.
    Choi SW, Jo SM, Lee WS, Kim YR (2003) Adv Mater 15:2027CrossRefGoogle Scholar
  12. 12.
    Li X, Cheruvally G, Kim JK et al (2007) J Power Sources 167:491CrossRefGoogle Scholar
  13. 13.
    Stephan AM (2006) Eur Polym J 42:21CrossRefGoogle Scholar
  14. 14.
    Delville MH, Duluard S, Litas I, Bhattacharyya AJ, Mauvy F, Campet G (2010) Electrochim Acta 55:8839CrossRefGoogle Scholar
  15. 15.
    Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I (2007) Mater Lett 61:2026CrossRefGoogle Scholar
  16. 16.
    Ramesh S, Winie T, Arof AK (2010) J Mater Sci 45:1280. doi: 10.1007/s10853-009-4079-2 CrossRefGoogle Scholar
  17. 17.
    Kim M, Han GY, Yoon KJ, Park JH (2010) J Power Sources 195:8302CrossRefGoogle Scholar
  18. 18.
    Forsyth M, Sun J, Zhou F, MacFarlane DR (2003) Electrochim Acta 48:2129CrossRefGoogle Scholar
  19. 19.
    Paracha RN, Ray S, Easteal AJ (2012) J Mater Sci 47:3698. doi: 10.1007/s10853-011-6218-9 CrossRefGoogle Scholar
  20. 20.
    Zygadlo-Monikowska E, Florjanczyk Z, Wielgus-Barry E, Pasniewski J (2006) J Power Sources 159:385CrossRefGoogle Scholar
  21. 21.
    Zeng WR, Li SF, Chow WK (2002) J Fire Sci 20:401CrossRefGoogle Scholar
  22. 22.
    Kashani A, Esfahani JA (2008) Heat Mass Transfer 44:641CrossRefGoogle Scholar
  23. 23.
    Bozkurt A, Celik SU (2010) Solid State Ionics 181:525CrossRefGoogle Scholar
  24. 24.
    Mandal UK, Bhardwaj P, Singh V, Aggarwal S (2010) J Mater Sci 45:1008. doi: 10.1007/s10853-009-4032-4 CrossRefGoogle Scholar
  25. 25.
    Wang YJ, Kim D (2007) J Power Sources 166:202CrossRefGoogle Scholar
  26. 26.
    Jang JH, Geng XY, Kwon OH (2005) Biomaterials 26:5427CrossRefGoogle Scholar
  27. 27.
    Xu W, Belieres JP, Angell CA (2001) Chem Mater 13:575CrossRefGoogle Scholar
  28. 28.
    Ramesh S, Ang GP (2010) Ionics 16:465CrossRefGoogle Scholar
  29. 29.
    Agrawal SL, Singh M, Tripathi M, Dwivedi MM, Pandey K (2009) J Mater Sci 44:6060. doi: 10.1007/s10853-009-3833-9 CrossRefGoogle Scholar
  30. 30.
    Jana S, Zhong WH (2008) J Mater Sci 43:4607. doi: 10.1007/s10853-008-2677-z CrossRefGoogle Scholar
  31. 31.
    Ramesh S, Wong KC (2009) Ionics 15:249CrossRefGoogle Scholar
  32. 32.
    Park JH, Cho JH, Park W et al (2010) J Power Sources 195:8306CrossRefGoogle Scholar
  33. 33.
    Kim YJ, Ahn CH, Lee MB, Choi MS (2011) Mater Chem Phys 127:137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wei-Wei Cui
    • 1
    • 2
  • Dong-Yan Tang
    • 1
  • Zai-lin Gong
    • 1
  • Yu-Di Guo
    • 1
  1. 1.Department of Chemistry, School of ScienceHarbin Institute of TechnologyHarbinChina
  2. 2.College of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations