Journal of Materials Science

, Volume 47, Issue 16, pp 6118–6124 | Cite as

Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys

  • Rajeev K. Gupta
  • R. K. Singh Raman
  • C. C. Koch


The electrochemical behavior of nano and microcrystalline Fe–10Cr and Fe–20Cr alloys was determined using potentiodynamic polarization in 0.5 M H2SO4. Disks of the alloys were prepared by high-energy ball milling followed by compaction and sintering. In the current study, nanocrystalline Fe–Cr alloys reveal significantly different electrochemical characteristics, typified by lower anodic current densities and more negative passivation potentials, compared with their microcrystalline counterparts. In addition to the differences in grain boundary density, compositional characterization of corrosion films carried out by X-ray photoelectron spectroscopy indicates a higher Cr content in the film developed upon nanocrystalline Fe–Cr alloys. Mechanisms for observed enhancement in the corrosion performance of the nanocrystalline Fe–Cr alloys are discussed.


Passive Film Passive Current Density Surface Mechanical Attrition Treatment Potentiodynamic Polarization Test Corrosion Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the Australian Research Council (ARC) Discovery grant scheme (DP0665112) for funding this study.


  1. 1.
    Gleiter H (1989) Prog Mater Sci 33:223CrossRefGoogle Scholar
  2. 2.
    Kim SH, Aust KT, Erb U, Gonzalez F, Palumbo G (2003) Scr Mater 48:1379CrossRefGoogle Scholar
  3. 3.
    Rofagha R, Erb U, Ostrander D, Palumbo G, Aust K (1993) Nanostruct Mater 2:1CrossRefGoogle Scholar
  4. 4.
    Kirchheim R, Huang XY, Cui P, Birringer R, Gleiter H (1992) Nanostruct Mater 1:167CrossRefGoogle Scholar
  5. 5.
    Barbucci A, Farne G, Matteazzi P, Riccieri R, Cerisola G (1999) Corros Sci 41:463CrossRefGoogle Scholar
  6. 6.
    Singh Raman RK, Gupta RK, Koch CC (2010) Philos Mag 90:3233CrossRefGoogle Scholar
  7. 7.
    Singh Raman RK, Gupta RK (2009) Corros Sci 51:316CrossRefGoogle Scholar
  8. 8.
    Rofagh R, Langer R, El-Sherik AM, Erb U, Palumbo G, Aust KT (1991) Scr Metall Mater 25:2867CrossRefGoogle Scholar
  9. 9.
    Ralston KD, Birbilis N (2010) Corrosion 66:1DCrossRefGoogle Scholar
  10. 10.
    Kedim OE, Pari S, Phigini C, Bernard F, Gaffet E, Munir ZA (2004) Mater Sci Eng A 369:49CrossRefGoogle Scholar
  11. 11.
    Tong HY, Shi FG, Lavernia EJ (1995) Scr Metall Mater 32:511CrossRefGoogle Scholar
  12. 12.
    Lu AQ, Zhang Y, Li Y, Liu G, Zang HQ, Liu CM (2006) Acta Meteall Sin 19:183CrossRefGoogle Scholar
  13. 13.
    Wang XY, Li DY (2002) Electrochim Acta 47:3939CrossRefGoogle Scholar
  14. 14.
    Ye W, Li Y, Wang F (2006) Electrochim Acta 51:4426CrossRefGoogle Scholar
  15. 15.
    Kwok CT, Cheng FT, Ma HC, Ding WH (2006) Mater Lett 60:2419CrossRefGoogle Scholar
  16. 16.
    Meng G, Li Y, Wang F (2006) Electrochim Acta 51:4277CrossRefGoogle Scholar
  17. 17.
    Gupta R, Singh Raman RK, Koch CC (2008) Mater Sci Eng A 494:253CrossRefGoogle Scholar
  18. 18.
    Kaesche H (2003) Corrosion of metals: physicochemical principles and current problems erlangen. Springer, BerlinGoogle Scholar
  19. 19.
    CasaXPS version 2.3.15. Casa Software Ltd.,
  20. 20.
    Gupta RK, Singh Raman RK, Koch CC (2010) J Mater Sci 45:4884CrossRefGoogle Scholar
  21. 21.
    Wang ZB, Tao NR, Tong WP, Lu J, Lu K (2003) Acta Mater 51:4319CrossRefGoogle Scholar
  22. 22.
    Kaur I, Gust W, Kozma L (1989) Handbook of grain and interphase boundary diffusion data. Zigler Press, Stuttgart, p 523Google Scholar
  23. 23.
    Bowen AW, Leak GM (1970) Metall Trans 1:1695CrossRefGoogle Scholar
  24. 24.
    Sieradzki K, Newman RC (1986) J Electrochem Soc 133:1979CrossRefGoogle Scholar
  25. 25.
    Qian S, Newman RC, Cottis RA (1990) J Electrochem Soc 137:435CrossRefGoogle Scholar
  26. 26.
    Gupta RK, Darling KS, Raman Singh RK, Ravi KR, Koch CC, Murty BS, Scattergood RO (2012) J Mater Sci 47:1562. doi: 10.1007/s10853-011-5986-6 CrossRefGoogle Scholar
  27. 27.
    Gupta RK, Raman Singh RK, Koch CC (2008) TMS Annu Meet 1:151Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rajeev K. Gupta
    • 1
    • 2
  • R. K. Singh Raman
    • 2
    • 3
  • C. C. Koch
    • 4
  1. 1.Department of Materials EngineeringMonash UniversityMelbourneAustralia
  2. 2.Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourneAustralia
  3. 3.Department of Chemical EngineeringMonash UniversityMelbourneAustralia
  4. 4.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations