Journal of Materials Science

, Volume 47, Issue 16, pp 6076–6085 | Cite as

Molten salts synthesis and electrical properties of Sr- and/or Mg-doped perovskite-type LaAlO3 powders

  • Esmeralda Mendoza-Mendoza
  • Karinjilottu P. Padmasree
  • Sagrario M. Montemayor
  • Antonio F. Fuentes


Lanthanum-based LaBO3 oxides adopting the very stable perovskite structure are currently considered attractive materials for a growing number of applications in the field of solid-state ionics. In particular, LaAlO3-based perovskites are promising electrolyte materials for solid oxide fuel cells because they show almost pure oxygen ion conductivity at low oxygen partial pressures and high temperatures as well as excellent thermal and chemical stability under the standard operating conditions. This article describes a low-temperature synthesis of pure and acceptor-doped perovskite-type LaAlO3 nanopowders via a facile and environmental-friendly molten salts method. Using hydrated metal nitrates and sodium hydroxide as raw materials, the proposed methodology consists of two steps: a mechanically induced metathesis reaction and short firing above NaNO3's melting point. The purpose of the first is twofold: i.e., to generate in situ the NaNO3 flux and to obtain a suitable precursor for the synthesis of the target materials in molten nitrates. Accordingly, pure and Mg- and/or Sr-doped LaAlO3 powders were obtained directly without using any purification step at temperatures ≤500 °C. When preparing the Mg-containing samples, NaNO2 was also added to the reaction mixture to increase melt reactivity. The formation of the target series in the molten salt is thought to proceed through a “dissolution–precipitation” mechanism with LaAlO3 particles precipitating during cooling from a solution oversaturated with reactants. Electrical properties of the as-prepared materials were measured as a function of temperature and frequency by means of impedance spectroscopy and found comparable to those shown by similar materials prepared using more complicated routes.


Molten Salt Solid Oxide Fuel Cell LaAlO3 Sodium Nitrate Metathesis Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Huang K, Feng M, Goodenough JB (1996) J Am Ceram Soc 79:1100CrossRefGoogle Scholar
  2. 2.
    Huang K, Tichy RS, Goodenough JB (1998) J Am Ceram Soc 81:2565CrossRefGoogle Scholar
  3. 3.
    Huang K, Tichy RS, Goodenough JB (1998) J Am Ceram Soc 81:2576CrossRefGoogle Scholar
  4. 4.
    Kilner JA, Barrow P, Brook RJ, Norgett MJ (1978) J Power Sources 3:67CrossRefGoogle Scholar
  5. 5.
    Anderson PS, Marques FMB, Sinclair DC, West AR (1999) Solid State Ion 118:229CrossRefGoogle Scholar
  6. 6.
    Nguyen TL, Dokiya M, Wang S, Tagawa H, Hashimoto T (2000) Solid State Ion 130:229CrossRefGoogle Scholar
  7. 7.
    Chen TY, Fung KZ (2004) J Power Sources 132:1CrossRefGoogle Scholar
  8. 8.
    Fung KZ, Chen TY (2011) Solid State Ion 188:64CrossRefGoogle Scholar
  9. 9.
    Fu QX, Tietz F, Lesch P, Stöver D (2006) Solid State Ion 177:1059CrossRefGoogle Scholar
  10. 10.
    Hall MM, Sleight AW, Subramanian MA (1999) Mater Res Bull 34:103CrossRefGoogle Scholar
  11. 11.
    Schneider SJ, Roth RS, Waring JL (1961) J Res Nat Bur Stand A 65A:345Google Scholar
  12. 12.
    Keith ML, Roy R (1954) Am Miner 39:1Google Scholar
  13. 13.
    Gillan EG, Kaner RB (1996) Chem Mater 8:333CrossRefGoogle Scholar
  14. 14.
    Kumar T, Gopalakrishnan J (2004) J Mater Chem 14:1273CrossRefGoogle Scholar
  15. 15.
    Ye XR, Jia DZ, Yu JQ, Xin XQ, Hue Z (1999) Adv Mater 11:941CrossRefGoogle Scholar
  16. 16.
    McCormick PG, Tsuzuki T, Robinson JS, Ding J (2001) Adv Mater 13:1008CrossRefGoogle Scholar
  17. 17.
    Díaz-Guillén JA, Fuentes AF, Gallini S, Colomer MT (2007) J Alloy Compd 427:87CrossRefGoogle Scholar
  18. 18.
    Deloume JP, Scharff JP, Marote P, Durand B, Abou-Jalil A (1999) J Mater Chem 9:107CrossRefGoogle Scholar
  19. 19.
    Matei C, Berger D, Marote P, Stoleriu S, Deloume JP (2007) Prog Solid State Chem 35:203CrossRefGoogle Scholar
  20. 20.
    Yang J, Li R, Zhou J, Li X, Zhang Y, Long Y, Li Y (2010) J Alloy Compd 508:301CrossRefGoogle Scholar
  21. 21.
    Afanasiev P, Geantet C (1998) Coord Chem Rev 178–180:1725CrossRefGoogle Scholar
  22. 22.
    Mendoza-Mendoza E, Montemayor SM, Escalante-García JI, Fuentes AF (2012) J Am Ceram Soc 95:1276CrossRefGoogle Scholar
  23. 23.
    Mączka M, Mendoza-Mendoza E, Fuentes AF, Lemański K, Dereń P (2012) J Solid State Chem 187:249CrossRefGoogle Scholar
  24. 24.
    Li Z, Zhang S, Lee WE (2007) J Eur Ceram Soc 27:3201CrossRefGoogle Scholar
  25. 25.
    Kojima T, Nomura K, Miyazaki Y, Tanimoto K (2006) J Am Ceram Soc 89:3610CrossRefGoogle Scholar
  26. 26.
    Gobinchon AE, Auffrédic JP, Louër D (1998) J Alloy Compd 275–277:130CrossRefGoogle Scholar
  27. 27.
    Audebrand N, Louër D (2000) Acta Cryst C56:913Google Scholar
  28. 28.
    Shaji Kumar MD, Srinivasan TM, Subramanian C, Ramasamy P (1997) Ceram Int 23:419CrossRefGoogle Scholar
  29. 29.
    Elsebrock R, Makovicka C, Meuffels P, Waser R (2003) J Electroceram 10:193CrossRefGoogle Scholar
  30. 30.
    Rao CNR, Prakash B, Natarajan M (1975) The National Standard Reference Data System, National Bureau of Standards (NSRDS-NBS-53), U.S. Department of CommerceGoogle Scholar
  31. 31.
    Zhang Q, Saito F (2000) J Am Ceram Soc 83:439CrossRefGoogle Scholar
  32. 32.
    Trémillon BL (1987) In: Mamantov G, Marassi R (eds) Molten salt chemistry: an introduction and selected applications. NATO ASI Series. D. Reidel Publishing Company, Dordrecht, p 279Google Scholar
  33. 33.
    Habboush DA, Kerridge DH (1984) Thermochim Acta 73:25CrossRefGoogle Scholar
  34. 34.
    Habboush DA, Kerridge DH, Tariq SA (1983) Thermochim Acta 65:53CrossRefGoogle Scholar
  35. 35.
    Kerridge DH, Shakir WM (1991) Thermochim Acta 182:107CrossRefGoogle Scholar
  36. 36.
    Trémillon B (1971) Pure Appl Chem 25:395CrossRefGoogle Scholar
  37. 37.
    Abood HMA, Kerridge DH (1993) Thermochim Acta 215:183CrossRefGoogle Scholar
  38. 38.
    Kerridge DH, Shakir WM (1989) Thermochim Acta 145:227CrossRefGoogle Scholar
  39. 39.
    Kerridge DH (1992) Thermochim Acta 200:379CrossRefGoogle Scholar
  40. 40.
    Li W, Zhou MW, Shi JL (2004) Mater Lett 58:365CrossRefGoogle Scholar
  41. 41.
    Taspinar E, Cuneyt Tas A (1997) J Am Ceram Soc 80:133CrossRefGoogle Scholar
  42. 42.
    Jonscher AK (1984) Dielectric relaxation in solids. Chelsea Dielectric Press, LondonGoogle Scholar
  43. 43.
    Ngai KL, Rendell RW (1997) ACS Symp Ser 676:45CrossRefGoogle Scholar
  44. 44.
    García-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Díaz-Guillén MR, Moreno KJ, Díaz-Guillén JA, Iborra E, Fuentes AF, Penycook SJ, León C, Santamaría J (2009) ChemPhysChem 10:1003CrossRefGoogle Scholar
  45. 45.
    Moreno KJ, Fuentes AF, Amador U, Santamaría J, León C (2007) J Non-Cryst Solids 353:3947CrossRefGoogle Scholar
  46. 46.
    Park JY, Choi GM (2002) Solid State Ion 154–155:535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Esmeralda Mendoza-Mendoza
    • 1
  • Karinjilottu P. Padmasree
    • 1
  • Sagrario M. Montemayor
    • 2
  • Antonio F. Fuentes
    • 1
  1. 1.Cinvestav Unidad SaltilloRamos ArizpeMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations