Journal of Materials Science

, Volume 47, Issue 22, pp 7751–7758 | Cite as

The effect of deformation texture on the thermal stability of UFG HSLA steel

  • Enrico Bruder
Ultrafine Grained Materials


The microstructures of ultrafine grained (UFG) metals processed by severe plastic deformation are far from the thermodynamic equilibrium thus being prone to undergo coarsening processes. Theoretical and experimental investigations revealed that the stability against discontinuous grain growth in UFG metals with high stacking fault energy strongly depends on the fraction of high angle grain boundaries (HAGBs). This means that discontinuous grain growth does not occur if the fraction of HAGBs exceeds a certain level. The present work focuses on the impact of strong deformation textures on the thermal stability of UFG microstructures in a ferritic steel processed by linear flow splitting. It shows that the expected correlation between thermal stability and fraction of HAGBs is valid up to moderate texture intensities, whereas a strong deformation texture promotes discontinuous grain growth in spite of a high fraction of HAGBs. EBSD measurements reveal that this behavior is attributed to a strain-induced grain boundary migration causing a progressive orientation pinning effect with ongoing grain growth. Thereby, a large fraction of HAGBs is transformed into low angle grain boundaries (LAGBs) with low mobility. Consequently, a microstructure with a majority of LAGBs evolves being unstable against discontinuous grain growth.


Texture Component Accumulative Roll Bonding Rolling Texture Primary Recrystallization Texture Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author gratefully acknowledges the German Research Foundation (DFG) for funding this work carried out within the framework of the Collaborative Research Center 666. The author also acknowledges Dr. Sandip Gosh Chowdhury (CSIR-National Metallurgical Laboratory, Jamshedpur) for fruitful discussions.


  1. 1.
    Song R, Ponge D, Raabe D, Speer JG, Matlock DK (2006) Mater Sci Eng A 441:1CrossRefGoogle Scholar
  2. 2.
    Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scripta Mater 47:893CrossRefGoogle Scholar
  3. 3.
    Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2001) Scripta Mater 45:747CrossRefGoogle Scholar
  4. 4.
    Vinogradov A, Hashimoto S (2003) Adv Eng Mater 5:351CrossRefGoogle Scholar
  5. 5.
    Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633CrossRefGoogle Scholar
  6. 6.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33CrossRefGoogle Scholar
  7. 7.
    Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A (2008) CIRP Ann-Manuf Techn 57:716CrossRefGoogle Scholar
  8. 8.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143CrossRefGoogle Scholar
  9. 9.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579CrossRefGoogle Scholar
  10. 10.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  11. 11.
    Pachla W, Kulczyk M, Sus-Ryszkowska M, Mazur A, Kurzydlowski KJ (2008) J Mater Process Technol 205:173CrossRefGoogle Scholar
  12. 12.
    Neugebauer R, Sterzing A, Bergmann M (2010) Prod Eng 4:391CrossRefGoogle Scholar
  13. 13.
    Bohn T, Bruder E, Müller C (2008) J Mater Sci 43:7307. doi: 10.1007/s10853-008-2682-2 CrossRefGoogle Scholar
  14. 14.
    Mughrabi H, Höppel HW, Kautz M, Valiev RZ (2003) Z Metallkd 94:1079Google Scholar
  15. 15.
    Wang YM, Ma E (2004) Acta Mater 52:1699CrossRefGoogle Scholar
  16. 16.
    Belyakov A, Sakai T, Miura H, Kaibyshev R, Tsuzaki K (2002) Acta Mater 50:1547CrossRefGoogle Scholar
  17. 17.
    Prangnell PB, Hayes JS, Bowen JR, Apps PJ, Bate PS (2004) Acta Mater 52:3193CrossRefGoogle Scholar
  18. 18.
    Tsuji N, Kamikawa N, Minamino Y (2004) Mater Sci Forum 467–470:341CrossRefGoogle Scholar
  19. 19.
    Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Mater Sci Eng A 265:188CrossRefGoogle Scholar
  20. 20.
    Park KT, Shin DH (2002) Mater Sci Eng A 334:79CrossRefGoogle Scholar
  21. 21.
    Morris DG, Muñoz-Morris MA (2002) Acta Mater 50:4047CrossRefGoogle Scholar
  22. 22.
    Molodova X, Gottstein G, Winning M, Hellmig RJ (2007) Mater Sci Eng A 460:204CrossRefGoogle Scholar
  23. 23.
    Humphreys FJ (1997) Acta Mater 45:4231CrossRefGoogle Scholar
  24. 24.
    Jazaeri H, Humphreys FJ (2004) Acta Mater 52:3251CrossRefGoogle Scholar
  25. 25.
    Ferry M, Hamilton NE, Humphreys FJ (2005) Acta Mater 53:1097CrossRefGoogle Scholar
  26. 26.
    Terada D, Li B, Sugiyama M, Tsuji N (2007) Mater Sci Forum 558–559:357CrossRefGoogle Scholar
  27. 27.
    Song R, Ponge D, Raabe D, Kaspar R (2005) Acta Mater 53:845CrossRefGoogle Scholar
  28. 28.
    Abbruzzese G, Lücke K (1986) Acta Metall Mater 34:905CrossRefGoogle Scholar
  29. 29.
    Groche P, Vucic D, Jöckel M (2007) J Mater Process Technol 183:249CrossRefGoogle Scholar
  30. 30.
    Müller C, Bohn T, Bruder E, Bruder T, Landersheim V, el Dsoki C, Groche P, Veleva D (2007) Mat-wiss u Werkstofftech 38:842CrossRefGoogle Scholar
  31. 31.
    Kamikawa N, Sakai T, Tsuji N (2007) Acta Mater 55:5873CrossRefGoogle Scholar
  32. 32.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, OxfordGoogle Scholar
  33. 33.
    Juul Jensen D (1995) In: Hansen N et al. (ed) Proceedings of the 16th Risǿ International Symposium on Material Science, pp 119–137Google Scholar
  34. 34.
    Messemaeker JD, Verlinden B, Humbeeck JV (2005) Acta Mater 53:4245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division Physical Metallurgy, Materials Science DepartmentDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations